Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Задача производителя потребителяСодержание книги Похожие статьи вашей тематики
Поиск на нашем сайте
Сейчас мы рассмотрим одну из общих задач параллельных вычислений — задачу производителя/потребителя. Вот ее обобщенная формулировка. Имеются один или несколько производителей, генерирующих данные некоторого типа (записи, символы и т.п.) и помещающих их в буфер, а также единственный потребитель, который извлекает помещенные в буфер элементы по одному. Требуется защитить систему от перекрытия операций с буфером, т.е. обеспечить, чтобы одновременно получить доступ к буферу мог только один процесс (производитель или потребитель). Мы рассмотрим несколько решений этой задачи, с тем чтобы проиллюстрировать как мощь семафоров, так и встречающиеся при их использовании ловушки. Для начала предположим, что буфер бесконечен и представляет собой линейный массив элементов. Говоря абстрактно, мы можем определить функции производителя и потребителя следующим образом:
На рис. 5.4 показана структура буфера b. Производитель может генерировать данные и сохранять их в буфере со своей индивидуальной скоростью. Всякий раз при сохранении увеличивается индекс in. Потребитель поступает аналогично, с тем отличием, что он не должен считывать данные из пустого буфера. Следовательно, перед выполнением считывания он должен убедиться, что производитель обогнал его (in > out). Примечание. Занятая часть буфера заштрихована Рис. 5.4. Бесконечный буфер задачи производитель/потребитель Попытаемся реализовать нашу систему с использованием бинарных семафоров. В листинге 5.8 приведена первая попытка реализации. Вместо работы с индексами in и out мы можем просто отслеживать количество элементов в буфере посредством целой переменной n = in - out. Для осуществления взаимного исключения используется семафор s; семафор delay применяется для ожидания потребителя при пустом буфере. Листинг 5.8. [Неверное] решение задачи производитель/потребитель с использованием бинарных семафоров int n; Решение представляется достаточно простым и очевидным. Производитель может добавлять данные в буфер в любой момент времени. Перед добавлением он выполняет waitB (s), а после добавления— signalB (s), чтобы предотвратить обращение к буферу других производителей или потребителя на все время операции добавления данных в буфер. Кроме того, при работе в критическом разделе производитель увеличивает значение п. Если n = 1, то перед этим добавлением данных в буфер он был пуст, так что производитель выполняет signalB (delay), чтобы сообщить об этом потребителю. Потребитель начинает с ожидания производства первого элемента, используя вызов waitB (delay). Затем потребитель получает данные из буфера и уменьшает значение n в своем критическом разделе. Если производители опережают потребителя (достаточно распространенная ситуация), то потребитель будет редко блокирован семафором delay, поскольку п обычно положительно. Следовательно, благополучно работают и производитель, и потребитель. Тем не менее в предложенной программе имеется один изъян. Когда потребитель исчерпывает буфер, он должен сбросить семафор delay с помощью инструкции if (n == 0) waits (delay);, чтобы дождаться размещения данных в буфере производителем. Рассмотрим сценарий, приведенный в табл. 5.2. В строке 14 потребитель не выполняет операцию waitB. Он действительно исчерпал буфер и установил п равным 0 в строке 8, но до проверки значения п в строке 14 оно было изменено производителем. В результате signals не соответствует предшествующему waitB. Значение п, равное -1 в строке 20, означает, что потребитель пытается извлечь из буфера несуществующий элемент. Простое перемещение проверки в критический раздел потребителя недопустимо, так как может привести к взаимоблокировке (например, после строки 8). Решение проблемы заключается во введении вспомогательной переменной, значение которой присваивается в критическом разделе и используется вне его, как показано в листинге 5.9. Внимательно рассмотрев приведенный код, вы убедитесь в отсутствии возможных взаимоблокировок.
Таблица 5.2. Возможный сценарий работы программы из листинга Листинг 5.9. Верное решение задачи производитель/потребитель с использованием бинарных семафоров int n; Несколько более простое решение (приведенное в листинге 5.10) можно получить при использовании обобщенных семафоров (именуемых также семафорами со счетчиками). Переменная n в этом случае является семафором; ее значение остается равным количеству элементов в буфере. Предположим теперь, что при переписывании этой программы произошла ошибка, и операции signal (s) и signal (n) оказались взаимозамененными. Это может привести к тому, что операция signal (n) будет выполняться в критическом разделе производителя без прерывания потребителя или другого производителя. Повлияет ли это на выполнение программы? Нет, поскольку потребитель в любом случае должен ожидать установки обоих семафоров перед продолжением работы. Листинг 5.10. Решение задачи производитель/потребитель с использованием семафоров semaphore n = 0; Теперь предположим, что взаимозаменены операции wait(n) и wait(s). Это приведет к фатальным последствиям. Если пользователь войдет в критический раздел, когда буфер пуст (n.count = 0), то ни один производитель не сможет добавить данные в буфер и система окажется в состоянии взаимной блокировки. Это хороший пример тонкости работы с семафорами и сложности корректной разработки параллельно работающих процессов. А теперь добавим к нашей задаче новое, достаточно реалистичное ограничение — конечность буфера. Буфер рассматривается нами как циклическое хранилище (см. рис. 5.5), при работе с которым значения указателей должны выражаться по модулю размера буфера. При этом выполняются следующие условия.
Вопрос 22.
Монитор — конструкция языка программирования, поддерживающая управляемый доступ к разделяемым данным. Монитор инкапсулирует: 1. Разделяемые критические данные. 2. Функции, использующие разделяемые данные. 3. Синхронизацию выполнения параллельных потоков, вызывающих указанную функцию. § Доступ к данным, располагающимся в мониторе, реализуется только из его функций. § Код синхронизации добавляется автоматически компилятором. Для каждого экземпляра монитора в каждый момент времени может выполняться не более одной функции.
Мониторы Хаара if (усл) wait (cv); При вызове signal: 1. Немедленно запускается ожидающий поток. 2. Поток, пославший сигнал, блокируется на все время, пока выполняется поток, которого он вывел из состояния ожидания. + Предсказуемость.
Мониторы Меса while (усл) wait (cv); При вызове signal: 1. Ожидающий поток переводится в состояние «Готов к выполнению». Поток, пославший сигнал, продолжает исполнение. 2. При освобождении монитора поток, получивший сигнал, конкурирует с другими потоками за вход в монитор на равных условиях. + Более эффективны (используют меньшее кол-во переменных). + Непосредственно поддерживают broadcast. Если вы получили сигнал, значит, возможно, состояние монитора изменилось.
Вопрос 23. Если запрашиваемый процессом ресурс недоступен, ОС переводит данный процесс в состояние ожидания. В случае когда требуемый ресурс удерживается другим ожидающим процессом, первый процесс не сможет сменить свое состояние. Такая ситуация называется тупиком (deadlock). Говорят, что в мультипрограммной системе процесс находится в состоянии тупика, если он ожидает события, которое никогда не произойдет. Системная тупиковая ситуация, или "зависание системы", является следствием того, что один или более процессов находятся в состоянии тупика. Иногда подобные ситуации называют взаимоблокировками. В общем случае проблема тупиков эффективного решения не имеет. Рассмотрим пример. Предположим, что два процесса осуществляют вывод с ленты на принтер. Один из них успел монополизировать ленту и претендует на принтер, а другой наоборот. После этого оба процесса оказываются заблокированными в ожидании второго ресурса (см. рис. 7.1).
Определение. Множество процессов находится в тупиковой ситуации, если каждый процесс из множества ожидает события, которое может вызвать только другой процесс данного множества. Так как все процессы чего-то ожидают, то ни один из них не сможет инициировать событие, которое разбудило бы другого члена множества и, следовательно, все процессы будут спать вместе. Выше приведен пример взаимоблокировки, возникающей при работе с так называемыми выделенными устройствами. Тупики, однако, могут иметь место и в других ситуациях. Hапример, в системах управления базами данных записи могут быть локализованы процессами, чтобы избежать состояния гонок (см. лекцию 5 "Алгоритмы синхронизации"). В этом случае может получиться так, что один из процессов заблокировал записи, необходимые другому процессу, и наоборот. Таким образом, тупики могут иметь место как на аппаратных, так и на программных ресурсах. Тупики также могут быть вызваны ошибками программирования. Например, процесс может напрасно ждать открытия семафора, потому что в некорректно написанном приложении эту операцию забыли предусмотреть. Другой причиной бесконечного ожидания может быть дискриминационная политика по отношению к некоторым процессам. Однако чаще всего событие, которого ждет процесс в тупиковой ситуации, – освобождение ресурса, поэтому в дальнейшем будут рассмотрены методы борьбы с тупиками ресурсного типа. Ресурсами могут быть как устройства, так и данные. Hекоторые ресурсы допускают разделение между процессами, то есть являются разделяемыми ресурсами. Например, память, процессор, диски коллективно используются процессами. Другие не допускают разделения, то есть являются выделенными, например лентопротяжное устройство. К взаимоблокировке может привести использование как выделенных, так и разделяемых ресурсов. Например, чтение с разделяемого диска может одновременно осуществляться несколькими процессами, тогда как запись предполагает исключительный доступ к данным на диске. Можно считать, что часть диска, куда происходит запись, выделена конкретному процессу. Поэтому в дальнейшем мы будем исходить из предположения, что тупики связаны с выделенными ресурсами, то есть тупики возникают, когда процессу предоставляется эксклюзивный доступ к устройствам, файлам и другим ресурсам. Традиционная последовательность событий при работе с ресурсом состоит из запроса, использования и освобождения ресурса. Тип запроса зависит от природы ресурса и от ОС. Запрос может быть явным, например специальный вызов request, или неявным – open для открытия файла. Обычно, если ресурс занят и запрос отклонен, запрашивающий процесс переходит в состояние ожидания. Далее в данной лекции будут рассматриваться вопросы обнаружения, предотвращения, обхода тупиков и восстановления после тупиков. Как правило, борьба с тупиками – очень дорогостоящее мероприятие. Тем не менее для ряда систем, например для систем реального времени, иного выхода нет.
|
||||||||||||||
Последнее изменение этой страницы: 2016-08-01; просмотров: 1017; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.144.253.195 (0.008 с.) |