ТОП 10:

Дифракция на одной щели. Как влияет на дифракцию Фраунгофера от одной щели увеличение длины волны и ширины щели?



Бесконечно длинную щель можно образовать, расположив рядом две обращённые в разные стороны полуплоскости.Следовательно, задача о дифракции Френеля от щели может быть решена с помощью спирали Корню.Волновую поверхность падающего света, плоскость щели и экран, на котором наблюдается дифракционная картина, будем считать параллельными друг другу.(рис1)

 


Для точки P, лежащей против середины щели, начало и конец результирующего вектора находятся в симметричных относительно начала координат точки спирали.

(рис2)

 
 

 


Если сместиться в точку , лежащую против края щели, начало результирующего вектора переместится в середину спирали О.Конец вектора переместится по спирали в направлении полюса .При углублении в область геометрической тени начало и конец результирующего вектора будут скользить по спирали и в конце концов окажутся на наименьшем расстоянии друг друга.Интенсивность света достигнет при этом минимума.При дальнейшем скольжении по спирали начало и конец вектора снова отойдут друг от друга и интенсивность будет расти.Тоже самое будет происходить при смещении из точки P в противоположную сторону, так как дифракционная картина симметрична относительно середины щели.Если изменять ширину щели, сдвигая полуплоскости в противоположные стороны, интенсивность в средней точке Р будет пульсировать, проходя попеременно через максимумы (рис.1) и отличные от нуля минимумы (рис.3,4)

Френелевская дифракционная картина от щели представляет собой светлую(р.1) или тёмную(р.2) центральную полосу, по обе стороны которой распологаются симметричные относительно неё чередующиеся тёмные и светлые полосы.При большой ширине щели начало и конец результирующего вектора для точки Р лежат на внутренних витках спирали вблизи полюсов и . Поэтому интенсивность света в точках, расположенных против щели, будет практически постоянной. Только на границах геометрической тени образуется система густо расположенных узких светлых и тёмных полос.

Как показывает формула ,расстояние минимумов от центра картины возрастает с уменьшением . Таким образом, с уменьшением ширины щели центральная светлая полоса расширяется, захватывая всё большую и большую область экрана.Если , то ,т.е. первый минимум соответствует углу ; следовательно, он сдвинут на бесконечно удалённый край экрана. Освещённость экрана падает от центра к краям постепенно, асимптотически приближаясь к нулю; ширина центральной световой полосы возрастает беспредельно.Таким образом, с уменьшением b освещённость стремится стать равномерной по всему экрану.(рис5)

 

 
 

 


Наоборот, при увеличении ширины щели положен8520/ие первых минимумов придвигается всё ближе и ближе к центру картины, так что центральный максимум становится всё резче и резче.При этом, относительная интенсивность максимума остаётся неизменной; абсолютная же величина его возрастает, ибо возрастает энергия, проходящая через уширенную щель. При очень широкой щели(по сравнению с ) мы получаем в центре резкое изображение линейного источника.

14. Дифракционная решётка. Дисперсия и разрешающая сила дифракционной решётки. Укажите порядки главных максимумов, которые не могут наблюдаться на на дифракционной решётке с периодом d=9мкм и шириной одной щели b=3мкм.

Дифракционная решётка (одномерная) представляет собой систему параллельных щелей равной ширины, лежащих в одной плоскости и разделённых равными по ширине непрозрачными промежутками. Дифракция, наблюдаемая при прохождении света через такой спектральный прибор, имеет большое практическое значение.

Величина d=a+b называется периодом решётки или её постоянной. Разность хода лучей от 2-х соседних щелей будет

Дифракционная картина на решётке определяется как результат взаимной интерференции волн, идущих от всех щелей. Поэтому в тех направлениях, в которых ни одна из щелей не распространяет свет, будут наблюдаться главные минимумы, определяемые условием: (m=1,2,3,….)

 
 

 

 


Выражение (m=1,2,3,…..) задаёт условие главных максимумов. Т.к. , то число главных максимумов будет определяться выражением

К тому же в направлениях, задаваемых условием :

(m=1,2,3,…,N-1,N+1,…,2N-1,2N+1,…

мы получим дополнительные минимумы.

Для решётки из N щелей между 2-мя главными максимумами находится N-1 щелей, разделённых вторичными максимумами, создающими очень слабый фон. Т. о. чем больше щелей, тем больше образуется минимумов между главными максимумами, и тем более интенсивными и острыми будут сами максимумы.

Основными характеристиками дифракционной решётки являются дисперсия и разрешающая сила.

 
 

 

 


Дисперсия решётки бывает угловая и линейная.

Угловая дисперсия определяет на какой угол расходятся лучи, длины волн которых отличаются на 1Ангстрем.

Линейная дисперсия : , где f – фокусное расстояние проецирующей линзы.

Разрешающая способность :

 

 

Растояние должно удовлетворять

условию Рэлея, т.е. минимум одного горба должен приходиться на максимум другого. Вывод разрешающей способности решётки:

Условия максимумов m-го порядка для лучей 1 и 2 будут

,

По условию Рэлея

или

Для дифракционной решётки интенсивность главных максимумов будет выражаться следующим образом:

Т.к. при заданных d и b отношение d\b=3, то очевидно, что для любых m кратных 3 выражение под синусом будет кратно и следовательно интенсивность будет равна 0.

Т.о. для заданного соотношения d и b не может наблюдаться каждый 3-й максимум.







Последнее изменение этой страницы: 2016-06-22; Нарушение авторского права страницы

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 34.231.21.160 (0.005 с.)