Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Дифракция на одной щели. Как влияет на дифракцию фраунгофера от одной щели увеличение длины волны и ширины щели.Содержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Бесконечно длинную щель можно образовать, расположив рядом две обращённые в разные стороны полуплоскости.Следовательно, задача о дифракции Френеля от щели может быть решена с помощью спирали Корню.Волновую поверхность падающего света, плоскость щели и экран, на котором наблюдается дифракционная картина, будем считать параллельными друг другу.(рис1)
Для точки P, лежащей против середины щели, начало и конец результирующего вектора находятся в симметричных относительно начала координат точки спирали. (рис2)
Если сместиться в точку , лежащую против края щели, начало результирующего вектора переместится в середину спирали О.Конец вектора переместится по спирали в направлении полюса .При углублении в область геометрической тени начало и конец результирующего вектора будут скользить по спирали и в конце концов окажутся на наименьшем расстоянии друг друга.Интенсивность света достигнет при этом минимума.При дальнейшем скольжении по спирали начало и конец вектора снова отойдут друг от друга и интенсивность будет расти.Тоже самое будет происходить при смещении из точки P в противоположную сторону, так как дифракционная картина симметрична относительно середины щели.Если изменять ширину щели, сдвигая полуплоскости в противоположные стороны, интенсивность в средней точке Р будет пульсировать, проходя попеременно через максимумы (рис.1) и отличные от нуля минимумы (рис.3,4) Френелевская дифракционная картина от щели представляет собой светлую(р.1) или тёмную(р.2) центральную полосу, по обе стороны которой распологаются симметричные относительно неё чередующиеся тёмные и светлые полосы.При большой ширине щели начало и конец результирующего вектора для точки Р лежат на внутренних витках спирали вблизи полюсов и . Поэтому интенсивность света в точках, расположенных против щели, будет практически постоянной. Только на границах геометрической тени образуется система густо расположенных узких светлых и тёмных полос. Как показывает формула ,расстояние минимумов от центра картины возрастает с уменьшением . Таким образом, с уменьшением ширины щели центральная светлая полоса расширяется, захватывая всё большую и большую область экрана.Если , то ,т.е. первый минимум соответствует углу ; следовательно, он сдвинут на бесконечно удалённый край экрана. Освещённость экрана падает от центра к краям постепенно, асимптотически приближаясь к нулю; ширина центральной световой полосы возрастает беспредельно.Таким образом, с уменьшением b освещённость стремится стать равномерной по всему экрану.(рис5)
Наоборот, при увеличении ширины щели положен8520/ие первых минимумов придвигается всё ближе и ближе к центру картины, так что центральный максимум становится всё резче и резче.При этом, относительная интенсивность максимума остаётся неизменной; абсолютная же величина его возрастает, ибо возрастает энергия, проходящая через уширенную щель. При очень широкой щели(по сравнению с ) мы получаем в центре резкое изображение линейного источника. 14. Дифракционная решётка. Дисперсия и разрешающая сила дифракционной решётки. Укажите порядки главных максимумов, которые не могут наблюдаться на на дифракционной решётке с периодом d=9мкм и шириной одной щели b=3мкм. Дифракционная решётка (одномерная) представляет собой систему параллельных щелей равной ширины, лежащих в одной плоскости и разделённых равными по ширине непрозрачными промежутками. Дифракция, наблюдаемая при прохождении света через такой спектральный прибор, имеет большое практическое значение. Величина d=a+b называется периодом решётки или её постоянной. Разность хода лучей от 2-х соседних щелей будет Дифракционная картина на решётке определяется как результат взаимной интерференции волн, идущих от всех щелей. Поэтому в тех направлениях, в которых ни одна из щелей не распространяет свет, будут наблюдаться главные минимумы, определяемые условием: (m=1,2,3,….)
Выражение (m=1,2,3,…..) задаёт условие главных максимумов. Т.к. , то число главных максимумов будет определяться выражением К тому же в направлениях, задаваемых условием: (m=1,2,3,…,N-1,N+1,…,2N-1,2N+1,… мы получим дополнительные минимумы. Для решётки из N щелей между 2-мя главными максимумами находится N-1 щелей, разделённых вторичными максимумами, создающими очень слабый фон. Т. о. чем больше щелей, тем больше образуется минимумов между главными максимумами, и тем более интенсивными и острыми будут сами максимумы. Основными характеристиками дифракционной решётки являются дисперсия и разрешающая сила.
Дисперсия решётки бывает угловая и линейная. Угловая дисперсия определяет на какой угол расходятся лучи, длины волн которых отличаются на 1Ангстрем. Линейная дисперсия: , где f – фокусное расстояние проецирующей линзы. Разрешающая способность:
Растояние должно удовлетворять условию Рэлея, т.е. минимум одного горба должен приходиться на максимум другого. Вывод разрешающей способности решётки: Условия максимумов m-го порядка для лучей 1 и 2 будут , По условию Рэлея или Для дифракционной решётки интенсивность главных максимумов будет выражаться следующим образом: Т.к. при заданных d и b отношение d\b=3, то очевидно, что для любых m кратных 3 выражение под синусом будет кратно и следовательно интенсивность будет равна 0. Т.о. для заданного соотношения d и b не может наблюдаться каждый 3-й максимум.
|
||||||||||||||||
Последнее изменение этой страницы: 2016-06-22; просмотров: 2111; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 13.59.36.4 (0.008 с.) |