Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Дифракция Фраунгофера на дифракционной

Поиск

Решетке

 

Большое практическое значение имеет дифракция, наблюдаемая при прохождении света через одномерную дифракционную решетку — систему параллельных щелей равной ширины, лежащих в одной плоскости и разделенных равными по ширине непрозрачными промежутками. Рассматривая дифракцию Фраунгофера на щели, мы видели, что распределение интенсивности на экране определяется направлением дифрагированных лучей. Это означает, что перемещение щели параллельно самой себе влево или вправо не изменит дифракционной картины. Следовательно, если перейти от одной щели ко многим (к дифракционной решетке), то дифракционные картины, создаваемые каждой щелью в отдельности, будут одинаковыми.

Дифракционная картина на решетке определяется как результат взаимной интерференции волн, идущих от всех щелей, т. е. в дифракционной решетке осуществляется многолучевая интерференция когерентных дифрагированных пучков света, идущих от всех щелей.

Рассмотрим дифракционную решетку. На рис. 262 для наглядности показаны только две соседние щели MN и CD. Если ширина каждой щели равна а, а ширина непрозрачных участков между щелями b, то величина d = a + bназывается постоянной (периодом) дифракционной решетки.

 

Рис. 262

 

Пусть плоская монохроматическая волна падает нормально к плоскости решетки. Так как щели находятся друг от друга на одинаковых расстояниях, то разности хода лучей, идущих от двух соседних щелей, будут для данного направления jодинаковы в пределах всей дифракционной решетки:

(180.1)

Очевидно, что в тех направлениях, в которых ни одна из щелей не распространяет свет, он не будет распространяться и при двух щелях, т. е. прежние (главные) минимумы интенсивности будут наблюдаться в направлениях, определяемых условием (179.2):

(180.2)

Кроме того, вследствие взаимной интерференции световых лучей, посылаемых двумя щелями, в некоторых направлениях они будут гасить друг друга, т. е. возникнут дополнительные минимумы. Очевидно, что эти дополнительные минимумы будут наблюдаться в тех направлениях, которым соответствует разность хода лучей l/2, З l/2, …, посылаемых, например, от крайних левых точек М и С обеих щелей. Таким образом, с учетом (180.1) условие дополнительных минимумов:

Наоборот, действие одной щели будет усиливать действие другой, если

(180.3)

т. е. выражение (180.3) задает условие главных максимумов.

Таким образом, полная дифракционная картина для двух щелей определяется из условий:

т. е. между двумя главными максимумами располагается один дополнительный минимум. Аналогично можно показать, что между каждыми двумя главными максимумами при трех щелях располагается два дополнительных минимума, при четырех щелях — три и т. д.

Если дифракционная решетка состоит из N щелей, то условием главных минимумов является условие (180.2), условием главных максимумов — условие (180.3), а условием дополнительных минимумов

(180.4)

где т' может принимать все целочисленные значения, кроме 0, N, 2N ,.... т. е. кроме тех, при которых условие (180.4) переходит в (180.3). Следовательно, в случае N щелей между двумя главными максимумами располагается N— 1 дополнительных минимумов, разделенных вторичными максимумами, создающими весьма слабый фон.

Чем больше щелей N, тем большее количество световой энергии пройдет через решетку, тем больше минимумов образуется между соседними главными максимумами, тем, следовательно, более интенсивными и более острыми будут максимумы. На рис. 263 качественно представлена дифракционная картина от восьми щелей. Так как модуль sinjне может быть больше единицы, то из (180.3) следует, что число главных максимумов

т. е. определяется отношением периода решетки к длине волны.

 

 

Рис. 263

 

Положение главных максимумов зависит от длины волны l (см. (180.3)). Поэтому при пропускании через решетку белого света все максимумы, кроме центрального (m = 0), разложатся в спектр, фиолетовая область которого будет обращена к центру дифракционной картины, красная — наружу. Это свойство дифракционной решетки используется для исследования спектрального состава света (определения длин волн и интенсивностей всех монохроматических компонентов), т. е. дифракционная решетка может быть использована как спектральный прибор.

Дифракционные решетки, используемые в различных областях спектра, отличаются размерами, формой, материалом поверхности, профилем штрихов и их частотой (от 6000 до 0,25 штрих/мм, что позволяет перекрывать область спектра от ультрафиолетовой его части до инфракрасной). Например, ступенчатый профиль решетки позволяет концентрировать основную часть падающей энергии в направлении одного определенного ненулевого порядка.

 

Пространственная решетка.

Рассеянии света

 

Дифракция света наблюдается не только на плоской одномерной решетке (штрихи нанесены перпендикулярно некоторой прямой линии), но и на двумерной решетке (штрихи нанесены во взаимно перпендикулярных направлениях в одной и той же плоскости). Большой интерес представляет также дифракция на пространственных (трехмерных) решетках — пространственных образованиях, в которых элементы структуры подобны по форме, имеют геометрически правильное и периодически повторяющееся расположение, а также постоянные (периоды) решеток, соизмеримые с длиной волны электромагнитного излучения. Иными словами, подобные пространственные образования должны иметь периодичность по трем не лежащим в одной плоскости направлениям. В качестве пространственных дифракционных решеток могут быть использованы кристаллические тела, так как в них неоднородности (атомы, молекулы, ионы) регулярно повторяются в трех направлениях.

Дифракция света может происходить также в так называемых мутных средах — средах с явно выраженными оптическими неоднородностями. К мутным средам относятся аэрозоли (облака, дым, туман), эмульсия, коллоидные растворы и т. д., т. е. такие среды, в которых взвешено множество очень мелких частиц инородных веществ. Свет, проходя через мутную среду, дифрагирует от беспорядочно расположенных микронеоднородностей, давая равномерное распределение интенсивностей по всем направлениям, не создавая какой-либо определенной дифракционной картины. Происходит так называемое рассеяние света в мутной среде. Это явление можно наблюдать, например, когда узкий пучок солнечных лучей, проходя через запыленный воздух, рассеивается на пылинках и тем самым становится видимым.

Рассеяние света (как правило, слабое) наблюдается также и в чистых средах, не содержащих посторонних частиц. Л. И. Мандельштам объяснил рассеяние света в средах нарушением их оптической однородности, при котором показатель преломления среды не постоянен, а меняется от точки к точке. В дальнейшем польский физик М. Смолуховский (1872—1917) указал, что причиной рассеяния света могут быть также флуктуации плотности, возникающие в процессе хаотического (теплового) движения молекул среды. Рассеяние света в чистых средах, обусловленное флуктуациями плотности, анизотропии или концентрации, называется молекулярным рассеянием.

Молекулярным рассеянием объясняется, например, голубой цвет неба. Согласно закону Д. Рэлея, интенсивность рассеянного света обратно пропорциональна четвертой степени длины волны (I» l-4), поэтому голубые и синие лучи рассеиваются сильнее, чем желтые и красные, обусловливая тем самым голубой цвет неба. По этой же причине свет, прошедший через значительную толщу атмосферы, оказывается обогащенным более длинноволновой частью спектра (сине-фиолетовая часть спектра полностью рассеивается) и поэтому при закате и восходе Солнце кажется красным, Флуктуации плотности и интенсивность рассеяния света возрастают с увеличением температуры. Поэтому в ясный летний день цвет неба является более насыщенным по сравнению с таким же зимним днем.

 



Поделиться:


Последнее изменение этой страницы: 2016-04-19; просмотров: 548; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.144.14.150 (0.012 с.)