Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Токи при размыкании и замыкании цепиСодержание книги
Поиск на нашем сайте
При всяком изменении силы тока в проводящем контуре возникает э. д. с. самоиндукции, в результате чего в контуре появляются дополнительные токи, называемые экстратоками самоиндукции. Экстратоки самоиндукции, согласно правилу Ленца, все гда направлены так, чтобы препятствовать изменениям тока в цепи, т. е. направлены противоположно току, создаваемому источником. При выключении источника тока экстратоки имеют такое же направление, что и ослабевающий ток. Следовательно, наличие индуктивности в цепи приводит к замедлению исчезновения или установления тока в цепи. Рассмотрим процесс выключения тока в цепи, содержащей источник тока с э.д.с. x, резистор сопротивлением Rи катушку индуктивностью L. Под действием внешней э. д. с. в цепи течет постоянный ток (внутренним сопротивлением источника тока пренебрегаем). В момент времени t = 0 отключим источник тока. Ток в катушке индуктивностью L начнет уменьшаться, что приведет к возникновению э.д.с. самоиндукции препятствующей, согласно правилу Ленца, уменьшению тока. В каждый момент времени ток в цепи определяется законом Ома I = xS/R, или (127.1) Разделив в выражении (127.1) переменные, получим . Интегрируя это уравнение по I (от I0 до I ) и t(от 0 до f), находим In (I/I0) = —Rt/L, или (127.2) где t = L/R— постоянная, называемая временем релаксации. Из (127.2) следует, что т есть время, в течение которого сила тока уменьшается в е раз. Таким образом, в процессе отключения источника тока сила тока убывает по экспоненциальному закону (127.2) и определяется кривой 1на рис. 183. Чем больше индуктивность цепи и меньше ее сопротивление, тем больше t и, следовательно, тем медленнее уменьшается ток в цепи при ее размыкании.
Рис. 183
При замыкании цепи помимо внешней э. д. с. x возникает э. д. с. самоиндукции препятствующая, согласно правилу Ленца, возрастанию тока. По закону Ома, IR = x + xS или Введя новую переменную u = IR - x, преобразуем это уравнение к виду где t — время релаксации. В момент замыкания (t = 0)сила тока I = 0 и u = -ℰ. Следовательно, интегрируя по u(от - ℰ до IR - ℰ) и t(от 0 до t), находим In [(IR - ℰ)]/ -ℰ = -t/t, или (127.3) где I0 = ℰ/R — установившийся ток (при t ® ¥). Таким образом, в процессе включения источника тока нарастание силы тока в цепи задается функцией (127.3) и определяется кривой 2 на рис. 183. Сила тока возрастает от начального значения I = 0 и асимптотически стремится к установившемуся значению I0 = ℰ / R. Скорость нарастания тока определяется тем же временем релаксации t = L/R, что и убывание тока. Установление тока происходит тем быстрее, чем меньше индуктивность цепи и больше ее сопротивление. Оценим значение э.д.с. самоиндукции ℰS, возникающей при мгновенном увеличении сопротивления цепи постоянного тока от R0 до R. Предположим, что мы размыкаем контур, когда в нем течет установившийся ток I0 = ℰ/R0. При размыкании цепи ток изменяется по формуле (1272). Подставив в нее выражение для I0 и т, получим
т. е. при значительном увеличении сопротивления цепи (R/R0 ≫ 1), обладающей большой индуктивностью, э.д.с. самоиндукции может во много раз превышать э.д.с. источника тока, включенного в цепь. Таким образом, необходимо учитывать, что контур, содержащий индуктивность, нельзя резко размыкать, так как это (возникновение значительных э.д.с. самоиндукции) может привести к пробою изоляции и выводу из строя измерительных приборов. Если в контур сопротивление вводить постепенно, то э.д.с. самоиндукции не достигнет больших значений.
Взаимная индукция
Рассмотрим два неподвижных контура (1 и 2), расположенных достаточно близко друг от друга (рис. 184).
Рис. 184
Если в контуре 1 течет ток I1 то магнитный поток, создаваемый этим током (поле, создающее этот поток, на рисунке изображено сплошными линиями), пропорционален I1. Обозначим через Ф21 ту часть потока, которая пронизывает контур 2. Тогда (128.1)
где L21 — коэффициент пропорциональности. Если ток I1 изменяется, то в контуре 2 индуцируется э.д.с. ℰ12, которая по закону Фарадея (см. (123.2)) равна и противоположна по знаку скорости изменения магнитного потока Ф21 созданного током в первом контуре и пронизывающего второй: Аналогично, при протекании в контуре 2 тока I2 магнитный поток (его поле изображено на рис. 184 штриховыми линиями) пронизывает первый контур. Если Ф12 — часть этого потока, пронизывающего контур 1, то Если ток I2 изменяется, то в контуре 1 индуцируется э.д.с. ℰi1, которая равна и противоположна по знаку скорости изменения магнитного потока Ф12, созданного током во втором контуре и пронизывающего первый: Явление возникновения э.д.с. в одном из контуров при изменении силы тока в другом называется взаимной индукцией. Коэффициенты пропорциональности L21и L12 называются взаимной индуктивностью контуров. Расчеты, подтверждаемые опытом, показывают, что L21и L12равны друг другу, т. е. (128.2) Коэффициенты L12 и L21зависят от геометрической формы, размеров, взаимного расположения контуров и от магнитной проницаемости окружающей контуры среды. Единица взаимной индуктивности та же, что и для индуктивности, — генри (Гн). Рассчитаем взаимную индуктивность двух катушек, намотанных на общий тороидальный сердечник. Этот случай имеет большое практическое значение (рис. 185). Рис. 185
Магнитная индукция поля, создаваемого первой катушкой с числом витков N1, током I1 и магнитной проницаемостью mсердечника, согласно (119.2), , где l — длина сердечника по средней линии. Магнитный поток сквозь один виток второй катушки . Тогда полный магнитный поток (потокосцепление) сквозь вторичную обмотку, содержащую N2 витков, Поток Y создается током I1 поэтому, согласно (128.1), получаем (128.3) Если вычислить магнитный поток, создаваемый катушкой 2 сквозь катушку 1, то для L12получим выражение в соответствии с формулой (128.3). Таким образом, взаимная индуктивность двух катушек, намотанных на общий тороидальный сердечник,
Трансформаторы
Принцип действия трансформаторов, применяемых для повышения или понижения напряжения переменного тока, основан на явлении взаимной индукции. Впервые трансформаторы были сконструированы и введены в практику русским электротехником П. Н. Яблочковым (1847—1894) и русским физиком И. Ф. Усагиным (1855—1919). Принципиальная схема трансформатора показана на рис. 186. Рис. 186
Первичная и вторичная катушки (обмотки), имеющие соответственно N1 и N2витков, укреплены на замкнутом железном сердечнике. Так как концы первичной обмотки присоединены к источнику переменного напряжения с э.д.с. ℰ1 то в ней возникает переменный ток создающий в сердечнике трансформатора переменный магнитный поток Ф, который практически полностью локализован в железном сердечнике и, следовательно, почти целиком пронизывает витки вторичной обмотки. Изменение этого потока вызывает во вторичной обмотке появление э.д.с. взаимной индукции, а в первичной — э.д.с. самоиндукции. Ток I1 первичной обмотки определяется согласно закону Ома: где R1 — сопротивление первичной обмотки. Падение напряжения I1R1на сопротивлении R1при быстропеременных полях малo по сравнению с каждой из двух э.д,с., поэтому (129.1) Э.д.с. взаимной индукции, возникающая во вторичной обмотке, (129.2) Сравнивая выражения (129.1) и (129.2), получим, что э.д.с., возникающая во вторичной обмотке, (129.3) где знак минус показывает, что э.д.с. в первичной и вторичной обмотках противоположны по фазе. Отношение числа витков N2/N1, показывающее, во сколько раз э.д.с. во вторичной обмотке трансформатора больше (или меньше), чем в первичной, называется коэффициентом трансформации. Пренебрегая потерями энергии, которые в современных трансформаторах не превышают 2% и связаны в основном с выделением в обмотках джоулевой теплоты и появлением вихревых токов, и применяя закон сохранения энергии, можем записать, что мощности тока в обеих обмотках трансформатора практически одинаковы: откуда, учитывая соотношение (129.3), найдем т. е. токи в обмотках обратно пропорциональны числу витков в этих обмотках. Если n2/n1> 1, то имеем дело с повышающий трансформатором, увеличивающим переменную э.д.с. и понижающим ток (применяются, например, для передачи электроэнергии на большие расстояния, так как в данном случае потери на джоулеву теплоту, пропорциональные квадрату силы тока, снижаются); если n2/n1 < 1, то имеем дело с понижающим трансформатором, уменьшающим э.д.с. и повышающим ток (применяются, например, при электросварке, так как для нее требуется большой ток при низком напряжении). Мы рассматривали трансформаторы, имеющие только две обмотки. Однако транс форматоры, используемые в радиоустройствах, имеют 4—5 обмоток, обладающих разными рабочими напряжениями. Трансформатор, состоящий из одной обмотки, называется автотрансформатором. В случае повышающего автотрансформатора э.д.с. подводится к части обмотки, а вторичная э.д.с. снимается со всей обмотки. В понижающем автотрансформаторе напряжение сети подается на всю обмотку, а вторичная э.д.с. снимается с части обмотки.
Энергия магнитного поля
Проводник, по которому протекает электрический ток, всегда окружен магнитным полем, причем магнитное поле появляется и исчезает вместе с появлением и исчезновением тока. Магнитное поле, подобно электрическому, является носителем энергии. Естественно предположить, что энергия магнитного поля равна работе, которая затрачивается током на создание этого поля. Рассмотрим контур индуктивностью L, по которому течет ток I. С данным контуром сцеплен магнитный поток (см. (126.1)) F = LI, причем при изменении тока на dI магнитный поток изменяется на dФ = LdI. Однако для изменения магнитного потока на величину dФ (см. § 121) необходимо совершить работу dA = IdF = LIdI. Тогда работа по созданию магнитного потока Ф будет равна Следовательно, энергия магнитного поля, связанного с контуром, (130.1) Исследование свойств переменных магнитных полей, в частности распространения электромагнитных волн, явилось доказательством того, что энергия магнитного поля локализована в пространстве. Это соответствует представлениям теории поля. Энергию магнитного поля можно представить как функцию величин, характеризующих это поле в окружающем пространстве. Для этого рассмотрим частный случай — однородное магнитное поле внутри длинного соленоида. Подставив в формулу (130.1) выражение (126.2), получим
Так как I = B l n2/n1> 1N) (см. (119.2)) и B = n2/n1> 1 (см. (109.3)), то (130.2) где Sl = V— объем соленоида. Магнитное поле соленоида однородно и сосредоточено внутри него, поэтому энергия (см. (130.2)) заключена в объеме соленоида и распределена в нем с постоянной объемной плотностью (130.3) Выражение (130.3) для объемной плотности энергии магнитного поля имеет вид, аналогичный формуле (95.8) для объемной плотности энергии электростатического поля, с той разницей, что электрические величины заменены в нем магнитными. Формула (130.3) выведена для однородного поля, но она справедлива и для неоднородных полей. Выражение (130.3) справедливо только для сред, для которых зависимость В от Н линейная, т. е. оно относится только к пара- и диамагнетикам (см. § 132).
Задачи
15.1. Кольцо из алюминиевого провода (r = 26 нОм-м) помещено в магнитное поле перпендикулярно линиям магнитной индукции. Диаметр кольца 20 см, диаметр провода 1 мм. Определить скорость изменения магнитного поля, если сила тока в кольце 0,5 А. [0,33 Тл/с]
15.2. В однородном магнитном поле, индукция которого 0,5 Тл, равномерно с частотой 300 мин-1 вращается катушка, содержащая 200 витков, плотно прилегающих друг к другу. Площадь поперечного сечения катушки 100 см2. Ось вращения перпендикулярна оси катушки и направлению магнитного поля. Определить максимальную э.д.с., индуцируемую в катушке. [31,4 В]
15.3. Определить, сколько витков проволоки, вплотную прилегающих друг к другу, диаметром 0,3 мм с изоляцией ничтожно малой толщины надо намотать на картонный цилиндр диаметром 1 см, чтобы получить однослойную катушку с индуктивностью 1 мГн. [3040]
15.4. Определить, через сколько времени сила тока замыкания достигнет 0,98 пре дельного значения, если источник тока замыкают на катушку сопротивлением 10 Ом и индуктивностью 0,4 Гн. [0,16 с] 15.5.
15.5. Два соленоида (индуктивность одного L1=0,36 Гн, второго L2 = 0,64 Гн) одинаковой длины и практически равного сечения вставлены один в другой. Определить взаимную индуктивность соленоидов. [0,48 Гн] 15.8.
15.6. Автотрансформатор, понижающий напряжение с U1=5,5 кВ до U2=220 В, содержит в первичной обмотке N1 = 1500 витков. Сопротивление вторичной обмотки R2 = 2 Ом. Сопротивление внешней цепи (в сети пониженного напряжения) R = 13 Ом. Пренебрегая сопротивлением первичной обмотки, определить число витков во вторичной обмотке трансформатора. [68]
Глава 16 Магнитные свойства вещества
|
||||
Последнее изменение этой страницы: 2016-04-19; просмотров: 2015; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.145.88.155 (0.011 с.) |