Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Давление под искривленной поверхностью

Поиск

Жидкости

 

Если поверхность жидкости не плоская, а искривленная, то она оказывает на жидкость избыточное (добавочное) давление. Это давление, обусловленное силами поверхностного натяжения, для выпуклой поверхности положительно, а для вогнутой поверхности — отрицательно.

Для расчета избыточного давления предположим, что свободная поверхность жидкости имеет форму сферы радиуса R, от которой мысленно отсечен шаровой сегмент, опирающийся на окружность радиуса г = Rsina (рис. 100). На каждый бесконечно малый элемент длины D l этого контура действует сила поверхностного натяжения DF = sD l, касательная к поверхности сферы. Разложив DF на два компонента (DF1 и DF2), видим, что геометрическая сумма сил DF2 равна нулю, так как эти силы на противоположных сторонах контура направлены в обратные стороны и взаимно уравновешиваются. Поэтому равнодействующая сил поверхностного натяжения, действующих на вырезанный сегмент, направлена перпендикулярно плоскости сечения внутрь жидкости и равна алгебраической сумме составляющих DF1:

Разделив эту силу на площадь основания сегмента яг2, вычислим избыточное давление на жидкость, создаваемое силами поверхностного натяжения и обусловленное кривизной поверхности:

(68.1)

Если поверхность жидкости вогнутая, то можно доказать, что результирующая сила поверхностного натяжения направлена из жидкости и равна

(68.2)

 

Следовательно, давление внутри жидкости под вогнутой поверхностью меньше, чем в газе, на величину Dp.

Формулы (68.1) и (68.2) являются частным случаем формулы Лапласа*, определяющей избыточное давление для произвольной поверхности жидкости двоякое кривизны:

(68.3)

где R1и R2 - радиусы кривизны двух любых взаимно перпендикулярных нормальных сечений поверхности жидкости в данной точке. Радиус кривизны положителен, если центр кривизны соответствующего сечения находится внутри жидкости, и отрицателен, если центр кривизны находится вне жидкости.

Для сферической искривленной поверхности (R1 = R1 = R)выражение (68.3) переходит в (68.1), для цилиндрической (R1 = Rи R2 = ¥ ) — избыточное давление

В случае плоской поверхности (R1 = R2 = ¥)силы поверхностного натяжения избыточного давления не создают.

 

Капиллярныe явления

 

Если поместить узкую трубку (капилляр) одним концом в жидкость, налитую в широкий сосуд, то вследствие смачивания или несмачивания жидкостью стенок капилляра кривизна поверхности жидкости в капилляре становится значительной. Если жидкость смачивает материал трубки, то внутри ее поверхность жидкости — мениск — имеет вогнутую форму, если не смачивает — выпуклую (рис. 101).

 

Рис. 101

 

Под вогнутой поверхностью жидкости появится отрицательное избыточное давление, определяемое по формуле (68.2). Наличие этого давления приводит к тому, что жидкость в капилляре поднимается, так как под плоской поверхностью жидкости в широком сосуде избыточного давления нет. Если же жидкость не смачивает стенки капилляра, то положительное избыточное давление приведет к опусканию жидкости в капилляре. Явление изменения высоты уровня жидкости в капиллярах называется капиллярностью. Жидкость в капилляре поднимается или опускается на такую высоту h, при которой давление столба жидкости (гидростатическое давление) rghуравновешивается избыточным давлением Dр, т. е.

где р — плотность жидкости, g — ускорение свободного падения.

Если r— радиус капилляра, q— краевой угол, то из рис. 101 следует, что (2scosq)/r = rgh, откуда

(69.1)

В соответствии с тем, что смачивающая жидкость по капилляру поднимается, а несмачивающая — опускается, из формулы (69.1) при q < p/2 (cos0>0) получим положительные значения А, а при 0>я/2 (cos0<0) — отрицательные. Из выражения (69.1) видно также, что высота поднятия (опускания) жидкости в капилляре обратно пропорциональна его радиусу. В тонких капиллярах жидкость поднимается достаточно высоко. Так, при полном смачивании (0=0) вода (р=1000 кг/м3, <т=0,073 Н/м) в капилляре диаметром 10 мкм поднимается на высоту А«3 м.

Капиллярные явления играют большую роль в природе и технике. Например, влагообмен в почве и в растениях осуществляется за счет поднятия воды по тончайшим капиллярам. На капиллярности основано действие фитилей, впитывание влаги бетоном и т. д.

 



Поделиться:


Последнее изменение этой страницы: 2016-04-19; просмотров: 1061; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.222.161.119 (0.007 с.)