Принцип причинности в квантовой 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Принцип причинности в квантовой



Механике

 

Из соотношения неопределенностей часто делают вывод о неприменимости принципа причинности к явлениям, происходящим в микромире. При этом основываются на следующих соображениях. В классической механике, согласно приношу причинности — принципу классического детерминизма, по известному состоянию системы в некоторый момент времени (полностью определяется значениями координат и импульсов всех частиц системы) и силам, приложенным к ней, можно абсолютно точно задать ее состояние в любой последующий момент. Следовательно, классическая физика основывается на следующем понимании причинности: состояние механической системы в начальный момент времени с известным законом взаимодействия частиц есть причина, а ее состояние в последующий момент — следствие.

С другой стороны, микрообъекты не могут иметь одновременно и определенную координату, и определенную соответствующую проекцию импульса (задаются соотношением неопределенностей (215.1)), поэтому и делается вывод о том, что в начальный момент времени состояние системы точно не определяется. Если же состояние системы не определено в начальный момент времени, то не могут быть предсказаны и последующие состояния, т. е. нарушается принцип причинности.

Однако никакого нарушения принципа причинности применительно к микрообъектам не наблюдается, поскольку в квантовой механике понятие состояния микрообъекта приобретает совершенно иной смысл, чем в классической механике. В квантовой механике состояние микрообъекта полностью определяется волновой функцией Y(x, у, z, t),квадрат модуля которой

|Y (x, у, z, t)|2задает плотность вероятности нахождения частицы в точке с координатами х, у, z.

В свою очередь, волновая функция Y (х, у, z, t)удовлетворяет уравнению Шредингера (217.1), содержащему первую производную функции Y по времени. Это же означает, что задание функции Y0 (для момента времени t0) определяет ее значение в последующие моменты. Следовательно, в квантовой механике начальное состояние Y0 есть причина, а состояние Y в последующий момент — следствие. Это и есть форма принципа причинности в квантовой механике, т. е. задание функции Y0 предопределяет ее значения для любых последующих моментов. Таким образом, состояние системы микрочастиц, определенное в квантовой механике, однозначно вытекает из предшествующего состояния, как того требует принцип причинности.

 

Движение свободной частицы

 

Свободная частица — частица, движущаяся в отсутствие внешних полей. Так как на свободную частицу (пусть она движется вдоль оси х) силы не действуют, то потенциальная энергия частицы U(x) = constи ее можно принять равной нулю. Тогда полная энергия частицы совпадает с ее кинетической энергией. В таком случае уравнение Шредингера (217.5) для стационарных состояний примет вид

(219.1)

Прямой подстановкой можно убедиться в том, что частным решением уравнения (219.1) является функция y(x) = Aeikx, где A = const и k = const, с собственным значением энергии

(219.2)

Функция y(x) = Aeikx = Ae(i/k)Ö2mEx представляет собой только координатную часть волновой функции Y(х, t). Поэтому зависящая от времени волновая функция, согласно (217.4),

(219.3)

(здесь w = E/ℏ и k = px/ℏ).функция (219.3) представляет собой плоскую монохроматическую волну де Бройля (см. (217.2)).

Из выражения (219.2) следует, что зависимость энергии от импульса

оказывается обычной для нерелятивистских частиц. Следовательно, энергия свободной частицы может принимать любые значения (так как волновое число k может принимать любые положительные значения), т. е. ее энергетический спектр является непрерывным.

Таким образом, свободная квантовая частица описывается плоской монохроматической волной де Бройля. Этому соответствует не зависящая от времени плотность вероятности обнаружения частицы в данной точке пространства

т. е. все положения свободной частицы в пространстве являются равновероятными.

 

Частица в одномерной прямоугольной

«потенциальной яме» е бесконечно

Высокими «стенками»

 

Проведем качественный анализ решений уравнения Шредингера применительно к частице в одномерной прямоугольной «потенциальной яме» с бесконечно высокими «стенками». Такая «яма» описывается потенциальной энергией вида (для простоты принимаем, что частица движется вдоль оси х)

где l — ширина «ямы», а энергия отсчитывается от ее дна (рис. 296).

 

 

Рис. 296

 

Уравнение Шредингера (217.5) для стационарных состояний в случае одномерной задачи запишется в виде

(220.1)

По условию задачи (бесконечно высокие «стенки»), частица не проникает за пределы «ямы», поэтому вероятность ее обнаружения (а следовательно, и волновая функция) за пределами «ямы» равна нулю. На границах «ямы» (при х = 0 и х = l)непрерывная волновая функция также должна обращаться в нуль. Следовательно, граничные условия в данном случае имеют вид

(220.2)

В пределах «ямы» (0 £ х £ l) уравнение Шредингера (220.1) сведется к уравнению

 

 

 

 

где

 

 

Общее решение дифференциального уравнения (220.3):

 

Y(x) = Asin kx + Bcos kx.

 

Так как по (220.2) y(x) = 0, то B = 0. Тогда

(220.5)

Условие (220.2) Y(l) = Asin kl выполняется только при k l = np, где n — целые числа, т. е. необходимо, чтобы

(220.6)

Из выражений (220.4) и (220.6) следует, что

(220.7)

т. е. стационарное уравнение Шредингера, описывающее движение частицы в «потенциальной яме» с бесконечно высокими «стенками», удовлетворяется только при собственных значениях, зависящих от целого числа n. Следовательно, энергия Enчастицы в «потенциальной яме» с бесконечно высокими «стенками» принимает лишь определенные дискретные значения, т. е. квантуется. Квантованные значения энергии Enназываются уровнями энергии, а число л, определяющее энергетические уровни частицы, называется главным квантовым числом. Таким образом, микрочастица в «потенциальной яме» с бесконечно высокими «стенками» может находиться только на определенном энергетическом уровне En, или, как говорят, частица находится в квантовом состоянии n.

Подставив в (220.5) значение k из (220.6), найдем собственные функции:

Постоянную интегрирования А найдем из условия нормировки (216.3), которое для данного случая запишется в виде

В результате интегрирования получим

а собственные функции будут иметь вид

(220.8)

Графики собственных функций (220.8), соответствующие уровням энергии (220.7) при n = 1, 2, 3, приведены на рис. 297,а.На рис. 297,б изображена плотность вероятности обнаружения частицы на различных расстояниях от «стенок» ямы, равная |Yn(x)|2 = Yn(x) Y*n(x) для n = 1, 2 и 3.

 

Рис. 297

 

Из рисунка следует, что, например, в квантовом состоянии с n = 2 частица не может находиться в середине «ямы», в то время как одинаково часто может пребывать в ее левой и правой частях. Такое поведение частицы указывает на то, что представления о траекториях частицы в квантовой механике несостоятельны.

Из выражения (220.7) вытекает, что энергетический интервал между двумя сосед ними уровнями равен

(220.9)

Например, для электрона при размерах ямы l = 10-1 м (свободные электроны в металле) DEn» 10-35 n Дж»10-16 n эВ, т. е. энергетические уровни расположены столь тесно, что спектр практически можно считать непрерывным. Если же размеры ямы соизмеримы с атомными (l = 10-10 м), то для электрона DEn» 10-17 n Дж»102 n эВ, т. е. получаются явно дискретные значения энергии (линейчатый спектр). Таким образом, применение уравнения Шредингера к частице в «потенциальной яме» с бесконечно высокими «стенками» приводит к квантованным значениям энергии, в то время как классическая механика на энергию этой частицы никаких ограничений не накладывает.

Кроме того, квантово-механическое рассмотрение данной задачи приводит к выводу, что частица «в потенциальной яме» с бесконечно высокими «стенками» не может иметь энергию меньшую, чем минимальная энергия, равная p22/(2m l 2). Наличие отличной от нуля минимальной энергии не случайно и вытекает из соотношения неопределенностей. Неопределенность координаты Аде частицы в «яме» шириной l равна Dx = l. Тогда, согласно соотношению неопределенностей (215.1), импульс не может иметь точное, в данном случае нулевое, значение. Неопределенность импульса Dр» h/ l. Такому разбросу значений импульса соответствует кинетическая энергия Emin» (Dp)2/(2m) = h2/(2m l 2). Все остальные уровни (n > 1) имеют энергию, превышающую это минимальное значение.

Из формул (220.9) и (220.7) следует, что при больших квантовых числах (n >> 1) DEn/En» 2/n << 1, т. е. соседние уровни расположены тесно: тем теснее, чем больше n. Если n очень велико, то можно говорить о практически непрерывной последовательности уровней и характерная особенность квантовых процессов — дискретность — сглаживается. Этот результат является частным случаем принципа соответствия Бора (1923), согласно которому законы квантовой механики должны при больших значениях квантовых чисел переходить в законы классической физики.

Более общая трактовка принципа соответствия, имеющего огромную роль в со временной физике, заключается в следующем: всякая новая, более общая теория, являющаяся развитием классической, не отвергает ее полностью, а включает в себя классическую теорию, указывая границы ее применения, причем в определенных пре дельных случаях новая теория переходит в старую. Так, формулы кинематики и динамики специальной теории относительности переходят при v<<с в формулы механики Ньютона. Например, хотя гипотеза де Бройля приписывает волновые свойства всем телам, но в тех случаях, когда мы имеем дело с макроскопическими телами, их волновыми свойствами можно пренебречь, т. е. применять классическую механику Ньютона.

 

Прохождение частицы сквозь

Потенциальный барьер.

Туннельный эффект

 

Рассмотрим простейший потенциальный барьер прямоугольной формы (рис. 298, а) для одномерного (по оси х)движения частицы. Для потенциального барьера прямоугольной формы высоты Uи ширины l можем записать

 

(для области 1),

(для области 2),

(для области 3).

 

 

При данных условиях задачи классическая частица, обладая энергией Е, либо беспрепятственно пройдет над барьером (при Е > U),либо отразится от него (при Е < U)и будет двигаться в обратную сторону, т. е. она не может проникнуть сквозь барьер. Для микрочастицы же, даже при E > U, имеется отличная от нуля вероятность, что частица отразится от барьера и будет двигаться в обратную сторону. При E < Uимеется также отличная от нуля вероятность, что частица окажется в области х > l,т. е. проникает сквозь барьер. Подобные, казалось бы, парадоксальные выводы следуют непосредственно из решения уравнения Шредингера, описывающего движение микро частицы при условиях данной задачи.

 

 

Рис. 298

 

Уравнение Шредингера (217.5) для стационарных состояний для каждой из выделенных на рис. 298, а области имеет вид

(221.1)

 

Общие решения этих дифференциальных уравнений:

 

(для области 1); (221.2)

 

(для области 2);

 

(для области 3). (221.3)

 

 

В частности, для области 1полная волновая функция, согласно (217.4), будет иметь вид

(221.4)

В этом выражении первый член представляет собой плоскую волну типа (219.3), распространяющуюся в положительном направлении оси х (соответствует частице, движущейся в сторону барьера), а второй — волну, распространяющуюся в противоположном направлении, т. е. отраженную от барьера (соответствует частице, движущейся от барьера налево).

Решение (221.3) содержит также волны (после умножения на временной множитель), распространяющиеся в обе стороны. Однако в области 3 имеется только волна, прошедшая сквозь барьер и распространяющаяся слева направо. Поэтому коэффициент В3 в формуле (221.3) следует принять равным нулю.

В области 2 решение зависит от соотношений Е > U или Е < U. Физический интерес представляет случай, когда полная энергия частицы меньше высоты потенциального барьера, поскольку при Е < Uзаконы классической физики однозначно не разрешают частице проникнуть сквозь барьер. В данном случае, согласно (221.1), q = ib — мнимое число, где

Учитывая значение qи B3=0, получим решения уравнения Шредингера для трех областей в следующем виде:

(для области 3). (221.5)

 

В области 2 функция (221.5) уже не соответствует плоским волнам, распространяющимся в обе стороны, поскольку показатели степени экспонент не мнимые, а действительные. Можно показать, что для частного случая высокого и широкого барьера, когда b l >>1, B2 » 0.

Качественный характер функций y1(x), y2(x), y3(x) иллюстрируется на рис. 298, б, откуда следует, что волновая функция не равна нулю и внутри барьера, а в области 3, если барьер не очень широк, будет опять иметь вид волн де Бройля с тем же импульсом, т. е. с той же частотой, но с меньшей амплитудой. Следовательно, получили, что частица имеет отличную от нуля вероятность прохождения сквозь потенциальный барьер конечной ширины.

Таким образом, квантовая механика приводит к принципиально новому специфическому квантовому явлению, получившему название туннельного эффекта, в результате которого микрообъект может «пройти» сквозь потенциальный барьер.

Для описания туннельного эффекта используют понятие коэффициента прозрачности D потенциального барьера, определяемого как отношение плотности потока прошедших частиц к плотности потока падающих. Можно показать, что

Для того чтобы найти отношение |A3/A1|2, необходимо воспользоваться условиями непрерывности y и y ' на границах барьера х = 0 и х = l (рис. 298):

(221.6)

Эти четыре условия дают возможность выразить коэффициенты A2, A3, B1 и B2через A1. Совместное решение уравнений (221.6) для прямоугольного потенциального барьера дает (в предположении, что коэффициент прозрачности мал по сравнению с единицей)

(221.7)

где U— высота потенциального барьера, Е— энергия частицы, l — ширина барьера, D0— постоянный множитель, который можно приравнять единице. Из выражения (221.7) следует, что D сильно зависит от массы mчастицы, ширины l барьера и от (U - E);чем шире барьер, тем меньше вероятность прохождения сквозь него частицы. Для потенциального барьера произвольной формы (рис. 299), удовлетворяющей условиям так называемого квазиклассического приближения (достаточно гладкая форма кривой), имеем

 

Рис. 299

 

С классической точки зрения прохождение частицы сквозь потенциальный барьер при Е < Uневозможно, так как частица, находясь в области барьера, должна была бы обладать отрицательной кинетической энергией. Туннельный эффект является специфическим квантовым эффектом. Прохождение частицы сквозь область, в которую, согласно законам классической механики, она не может проникнуть, можно пояснить соотношением неопределенностей. Неопределенность импульса Dр на отрезке Dx = l составляет Dр > h/ l. Связанная с. этим разбросом в значениях импульса кинетическая энергия (Dр)2/(2m) может оказаться достаточной для того, чтобы полная энергия частицы оказалась больше потенциальной.

Основы теории туннельных переходов заложены работами Л. И. Мандельштама и М. А. Леонтовича (1903—1981). Туннельное прохождение сквозь потенциальный барьер лежит в основе многих явлений физики твердого тела (например, явления в контактном слое на границе двух полупроводников), атомной и ядерной физики (например, a-распад, протекание термоядерных реакций).

 



Поделиться:


Последнее изменение этой страницы: 2016-04-19; просмотров: 757; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.135.213.214 (0.25 с.)