Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Исследование явления дифракции Фраунгофера

Поиск

На дифракционной решётке.

Цель работы: Изучение дифракционного спектра, возникающего при дифракции лазерного луча на дифракционной решётке. Определение с помощью дифракционной решётки длины световой волны, разрешающей способности и дисперсии различных дифракционных решеток.

Приборы и принадлежности: лазер, набор дифракционных решеток, измерительная линейка, экран.

Краткие теоретические сведения.

Под дифракцией света понимают любое отклонение от прямолинейного распространения колебаний в среде с резкими неоднородностями (края экранов, отверстия и т.д.), что связано с отклонениями от законов геометрической оптики. Возникновение дифракции можно объяснить с помощью принципа Гюйгенса-Френеля:

Рис.8.1. Построение фронта волны.

1 Каждая точка фронта волны служит центром (источником) вторичных волн, а огибающая этих волн дает положение фронта волны в следующий момент времени (рис.8. 1).

2: Вторичные источники создают когерентные между собой сферические волны. Поэтому новое положение фронта волны, распределение интенсивности света в пространстве — результат интерференции волн от вторичных источников.

Рассмотрим дифракцию на дифракционной решётке. Дифракционной решеткой называется совокупность большого числа одинаковых, щелей отстоящих друг от друга на одно и то же расстояние (рис.8.2). Пусть ширина каждой щели равна b, а период решётки (р асстояние между серединами соседних щелей) — d.

На дифракционной решетке осуществляется интерференция когерентных дифрагированных пучков света, идущих от всех щелей.

А
Разности хода лучей от соседних щелей (разность хода определяется как расстояние от положения фронта падающей волны АВ до фронта волны АС, распространяющейся под углом j),одинаковы в пределах всей дифракционной решетки (см. рис.8.2 б) и равны

D=dsinj. (8.1)

Следовательно, разности фаз δ также одинаковы и равны:

. (8.2)

 

Если решётка содержит N щелей, то разность фаз волн, прошедших через последнюю (N) и первую щель будет в N раз больше,

 

Для тех направлений, для которых разность фаз d=±2p m, т.е. при условии

=2p m,

получим после сокращения на 2p

d sinj=± m l, m =0, 1, 2, … (8.3)

 

Формула (8.3) определяет положения максимумов интенсивности, называемых главными, т.к. лучи от отдельных щелей, поскольку их фазы одинаковы, взаимно усиливают друг друга.

Число m дает, так называемый, порядок главного максимума. Максимум нулевого порядка только один, максимумов первого, второго и т.д. по два. Таким образом, дифракционная картина содержит набор дифракционных максимумов (рис.8.3).

Кроме максимумов, определяемых условием (8.3), в промежутках между соседними главными максимумами имеется по (N –1)-му добавочному минимуму (N —число щелей), а между дополнительными минимумами дополнительно появляются слабые вторичные побочные максимумы.

люи 4. Характеристики спектрального прибора.

Дифракционная решетка разлагает падающий на неё свет в спектр (по длинам волн) т. е. является спектральным прибором. Основными характеристиками любого спектрального прибора являются угловая дисперсия и разрешающая способность.

Угловая дисперсия D характеризует степень углового разделения волн с различными l. По определению,

. (8.8)

Взяв дифференциал от соотношения (8.3) при данном m находим:

d cosj d j= md l,

откуда

. (8.9)

 

Разрешающей способностью R спектрального прибора называют безразмерную величину

, (8.10)

где dl – наименьшая разность длин волн двух спектральных линий в окрестности l, при которой эти линии воспринимаются еще раздельно, т.е. разрешаются. Согласно критерию Рэлея, необходимо, чтобы максимум m ‑го порядка линии с длиной волны l+dl совпадал по направлению с первым добавочным минимумом линии l¢ (k ¢= mN +1). Расчёты показывают, что в этом случае

 

. (8.11)

 

Задание: С помощью дифракционной решётки определить длину световой волны,рассчитать дисперсию и разрешающую способность дифракционных решёток

1. Установить на направляющей необходимые части установки (рис.8.7).

2. С помощью магнитов прикрепить к экрану лист миллиметровой бумаги

3. Дифракционную решетку с известным периодом d — (d=1мм/число щелей приходящихся1 мм)

4. Включить лазер в сеть.

5. Направить луч лазера на дифракционную решетку и, передвигая вдоль скамьи экран, установить его в таком положении, чтобы дифракционная картина занимала бы большую часть экрана, и при этом было бы видно наибольшее количество максимумов.

6. Перерисовать дифракционную картину на миллиметровую бумагу (Центры максимумов обозначить точкой). Отметить центральный максимум.

7. Выключить лазер. Снять бумагу и с возможной максимальной точностью штангенциркулем определить расстояние между центрами симметричных дифракционных максимумов. Результаты измерения занести в таблицу 8.1.

8. Измерить расстояние L от решетки до экрана. Снять миллиметровую бумагу. Измерить расстояния хm1, х2,и т.д.) между симметричными максимумами. Все результаты здесь и далее заносить в таблицу с обязательным указанием единиц измерения!

9. Вычислить значения тангенсов углов дифракции. По известным значениям рассчитать значения углов в радианах, а затем и синусов углов, соответствующих измеренным значениям хm.

  1. По формуле (8.3) вычислить длину волны.

12. По формулам (8.9) и (8.11) рассчитать угловую дисперсию D и разрешающую способность R дифракционной решетки.

13. Установить вторую и третью дифракционные решётки с другим числом щелей и проделать всё, что указано в пп.3—11. Обратить внимание на характер изменения дифракционной картин.

Таблица 8.1 Число штрихов на 1мм=…,d = …, = ….
m х m sin j m li=(d sin j m)/m  
         
  <l> = …
               

 

Определить для одной из решёток погрешность в определении длины волны

, где t коэффициент Стьюдента для числа измерений n = и надёжности α= 0.95 Записать полученный результат в виде l=<l>±Δl

 

Контрольные вопросы

1 Явление дифракции.

2. Принципы Гюйгенса-Френеля.

1. Дифракция Фраунгофера.

2. Условия максимумов и минимумов при дифракции на дифракционной решетке.

3. Объяснение дифракционной картины с помощью векторной диаграммы.

4. Получить условия для получения главных максимумов, для побочных минимумов и побочных максимумов.

5. Вывести формулу для интенсивности побочных максимумов

6. Угловая дисперсия дифракционной решетки. Разрешающая способность дифракционной решетки.



Поделиться:


Последнее изменение этой страницы: 2016-08-12; просмотров: 206; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.12.165.68 (0.006 с.)