Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Магнитное поле кругового витка с током.Содержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Общая картина силовых линий тоже просматривается (рис.7.10). Сложение гармонических колебаний Если система участвует одновременно в нескольких колебательных процессах, то под сложением колебаний понимают нахождение закона, описывающий результиующий колебательный процесс.
По идее, нас интересовало бы поле , но в элементарных функциях указать поле этого витка нельзя. Найти можно только на оси симметрии. Мы ищем поле в точках (х,0,0). Направление вектора определяется векторным произведением . Вектор имеет две составляющие: и . Когда мы начнём суммировать эти вектора, то все перпендикулярные составляющие в сумме дадут ноль. . А теперь пишем: , = , а . , и, наконец1), . Мы добыли такой результат: А теперь, в качестве проверки, поле в центре витка равна: . 39. Работа, совершаемая при перемещении контура с током в магнитном поле. Рассмотрим отрезок проводника с током, способный свободно перемещаться по двум направляющим во внешнем магнитном поле (рис.9.5). Магнитное поле будем считать однородным и направленным под углом α по отношению к нормали к плоскости переме-щения проводника.
Рис.9.5. Отрезок проводника с током в однородном магнитном поле. Как видно из рис.9.5, вектор имеет две составляющие и , из которых только составляющая создает силу, действующую в плоскости перемещения проводника. По абсолютной величине эта сила равна: , где I – сила тока в проводнике; l – длина проводника; B – индукция магнитного поля. Работа этой силы на элементарном пути перемещения ds есть: . Произведение lds равно площади dS, заметанной проводником при движении, а величина BdScosα равна потоку магнитной индукции dФ через эту площадь. Следовательно, можем написать: dA=IdФ. Рассматривая отрезок проводника с током как часть замкнутого контура и интегрируя это соотношение, найдем работу при перемещении контура с током в магнитном поле: A = I(Ф2 – Ф1) где Ф1 и Ф2 обозначают поток индукции магнитного поля через площадь контура соответственно в начальном и конечном положениях. 40. Движение заряженных частиц в Однородном магнитном поле Рассмотрим частный случай, когда нет электрического поля, но имеется магнитное поле. Предположим, что частица, обладающая начальной скоростью u0, попадает в магнитное поле с индукцией B. Это поле мы будем считать однородным и направленным перпендикулярно к скорости u0. Основные особенности движения в этом случае можно выяснить, не прибегал к полному решению уравнений движения. Прежде всего, отметим, что действующая на частицу сила Лоренца всегда перпендикулярна к скорости движения частицы. Это значит, что работа силы Лоренца всегда равна нулю; следовательно, абсолютное значение скорости движения частицы, а значит, и энергия частицы остаются постоянными при движении. Так как скорость частицы u не изменяется, то величина силы Лоренца остается постоянной. Эта сила, будучи перпендикулярной, к направлению движения, является центростремительной силой. Но движение под действием постоянной по величине центростремительной силы есть движение по окружности. Радиус r этой окружности определяется условием откуда Если энергия электрона выражена в эВ и равна U, то (3.6) и поэтому Кругообразное движение заряженных частиц в магнитном поле обладает важной особенностью: время полного обращения частицы по окружности (период движения) не зависит от энергии частицы. Действительно, период обращения равен Подставляя сюда вместо r его выражение по формуле (3.6), имеем: (3.7) Частота же оказывается равной Для данного типа частиц и период, и частота зависят только от индукции магнитного поля. Выше мы предполагали, что направление начальной скорости перпендикулярно к направлению магнитного поля. Нетрудно сообразить, какой характер будет иметь движение, если начальная скорость частицы составляет некоторый угол с направлением поля. В этом случае удобно разложить скорость на две составляющие, одна из которых параллельна полю, а другая перпендикулярна к полю. На частицу действует сила Лоренца, и частица движется по окружности, лежащей в плоскости, перпендикулярной к полю. Составляющая Ut, не вызывает появления добавочной силы, так как сила Лоренца при движении параллельно полю равна нулю. Поэтому в направлении поля частица движется по инерции равномерно, со скоростью В результате сложения обоих движений частица будет двигаться по цилиндрической спирали. Шаг винта этой спирали равен подставляя вместо T его выражение (3.7), имеем: 41. Эффе́кт Хо́лла — явление возникновения поперечной разности потенциалов (называемой также холловским напряжением) при помещении проводника с постоянным током в магнитное поле. Открыт Эдвином Холлом в 1879 году в тонких пластинках золота. Свойства В простейшем рассмотрении эффект Холла выглядит следующим образом. Пусть через металлический брус в слабом магнитном поле течёт электрический ток под действиемнапряжённости . Магнитное поле будет отклонять носители заряда (для определённости электроны) от их движения вдоль или против электрического поля к одной из граней бруса. При этом критерием малости[1] будет служить условие, что при этом электрон не начнёт двигаться по циклоиде. Таким образом, сила Лоренца приведёт к накоплению отрицательного заряда возле одной грани бруска, и положительного — возле противоположной. Накопление заряда будет продолжаться до тех пор, пока возникшее электрическое поле зарядов не скомпенсирует магнитную составляющую силы Лоренца: Скорость электронов можно выразить через плотность тока: где — концентрация носителей заряда. Тогда Коэффициент пропорциональности между и называется коэффициентом (или константой) Холла. В таком приближении знак постоянной Холла зависит от знака носителей заряда, что позволяет определять их тип для большого числа металлов. Для некоторых металлов (например, таких, как свинец, цинк, железо, кобальт, вольфрам), в сильных полях наблюдается положительный знак , что объясняется в полуклассической и квантовой теориях твёрдого тела.
42. Электромагнитная индукция — явление возникновения электрического тока в замкнутом контуре при изменении магнитного потока, проходящего через него. Электромагнитная индукция была открыта Майклом Фарадеем 29 августа[ источник не указан 111 дней ] 1831 года. Он обнаружил, что электродвижущая сила, возникающая в замкнутом проводящем контуре, пропорциональна скорости изменения магнитного потока через поверхность, ограниченную этим контуром. Величина электродвижущей силы (ЭДС) не зависит от того, что является причиной изменения потока — изменение самого магнитного поля или движение контура (или его части) в магнитном поле. Электрический ток, вызванный этой ЭДС, называется индукционным током. 43.
|
||||||||||||||
Последнее изменение этой страницы: 2016-06-22; просмотров: 943; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.140.188.174 (0.007 с.) |