Проверочный расчет на усталостную прочность



Мы поможем в написании ваших работ!


Мы поможем в написании ваших работ!



Мы поможем в написании ваших работ!


ЗНАЕТЕ ЛИ ВЫ?

Проверочный расчет на усталостную прочность



Данный расчет выполняется на стадии рабочего проектирования, когда практически готов рабочий чертёж вала, т.е. известна его точная форма, размеры и все концентраторы напряжений: шпоночные пазы, кольцевые канавки, сквозные и глухие отверстия, посадки с натягом, галтели (плавные, скруглённые переходы диаметров).

Расчет на сопротивление усталости отражают влияние разновидности цикла напряжений, статических и усталостных характеристик материалов, размеров, формы и состояния поверхности. Расчет выполняют в форме проверки коэффициента запаса прочности S, минимально допустимое значение которого принимают =1,5–2,5 в зависимости от ответственности конструкции и последствий разрушения вала, точности определения нагрузок и напряжений, уровня технологии изготовления и контроля.

Для каждого из установленных предположительно опасных сечений вычисляют коэффициент запаса прочности S:

,

где и – коэффициенты запаса по нормальным и касательным напряжениям, определяемые по зависимостям:

; ;

где , – амплитуды напряжений цикла;

, – средние напряжения цикла;

, – коэффициенты чувствительности к асимметрии цикла напряжений для рассматриваемого сечения.

В расчетах валов принимают, что нормальные напряжения изменяются по симметричному циклу: = и =0, а касательные напряжения изменяются по отнулевому циклу: = /2 и = /2, где и – нормальные и касательные напряжения действующие в рассматриваемом сечении (см. п.6.5, по эпюрам, построенным при проверочном расчете на статическую прочность).

Отсюда:

; ;

Пределы выносливости вала в рассматриваемом сечении:

; ;

где , – пределы выносливости гладких образцов при симметричном цикле изгиба и кручения (табл. 6.1);

, – коэффициенты снижения предела выносливости, которые вычисляются по зависимостям:

; ;

где , – эффективные коэффициенты концентрации напряжений;

, – коэффициенты влияния абсолютных размеров поперечного сечения (табл. 6.2);

, – коэффициенты влияния качества поверхности (табл. 6.3);

– коэффициент влияния поверхностного упрочнения (табл. 6.4).

Значения коэффициентов и берут из таблиц: для ступенчатого перехода с галтелью (рис. 6.6) – табл. 6.5; для шпоночного паза, шлицевых и резьбовых участков валов – табл. 6.6. Для оценки концентрации напряжений в местах установки на валу деталей с натягом используют соотношения и (табл. 6.7).

При действии в расчетном сечении нескольких источников концентрации напряжений учитывают наиболее опасный из них (с наибольшим значением или ).

Коэффициент влияния асимметрии цикла для рассматриваемого сечения вала:

,

где – коэффициент чувствительности материала к асимметрии цикла напряжений (табл. 6.1).

Таблица 6.2

Коэффициенты влияния абсолютных размеров поперечного сечения ,

  Диаметр вала, мм
для углеродистой стали 0,92 0,88 0,85 0,81 0,76 0,71
для легированной стали 0,83 0,77 0,73 0,70 0,65 0,59
для всех сталей 0,83 0,77 0,73 0,70 0,65 0,59

Таблица 6.3

Коэффициенты влияния качества поверхности ,

Вид механической обработки Параметр шероховатости Ra, мкм при , МПа при , МПа
≤ 700 >700 ≤ 700 >700
Шлифование тонкое до 0,2
Обтачивание тонкое 0,2…0,8 0,99…0,93 0,99…0,91 0,99…0,96 0,99…0,95
Шлифование чистовое 0,8…1,6 0,93…0,89 0,91…0,86 0,96…0,94 0,95…0,92
Обтачивание чистовое 1,6…3,2 0,89…0,86 0,86…0,82 0,94…0,92 0,92…0,89

Таблица 6.4

Коэффициент влияния поверхностного упрочнения

Вид упрочнения поверхности вала Значения при
=1,0 =1,1…1,5 >1,8
Закалка ТВЧ 1,3…1,6 1,6…1,7 2,4…2,8
Азотирование 1,15…1,25 1,3…1,9 2,0…3,0
Накатка роликом 1,2…1,4 1,5…1,7 1,8…2,2
Дробеструйный наклеп 1,1…1,3 1,4…1,5 1,6…2,5
Без упрочнения 1,0 1,0 1,0

 

Рис. 6.6. Ступенчатый переход с галтелью

Таблица 6.5

Коэффициенты , для перехода с галтелью

t/r r/d при , МПа при , МПа
0,01 1,55 1,6 1,65 1,7 1,4 1,4 1,45 1,45
0,02 1,8 1,9 2,0 2,15 1,55 1,6 1,65 1,7
0,03 1,8 1,95 2,05 2,25 1,55 1,6 1,65 1,7
0,05 1,75 1,9 2,0 2,2 1,6 1,6 1,65 1,75

Продолжение таблицы 6.5

t/r r/d при , МПа при , МПа
0,01 1,9 2,0 2,1 2,2 1,55 1,6 1,65 1,75
0,02 1,95 2,1 2,2 2,4 1,6 1,7 1,75 1,85
0,03 1,95 2,1 2,25 2,45 1,65 1,75 1,75 1,9
0,01 2,1 2,25 2,35 2,5 2,2 2,3 2,4 2,6
0,02 2,15 2,3 2,45 2,65 2,1 2,15 2,25 2,5

Таблица 6.6

Коэффициенты , для шпоночных, шлицевых и резьбовых участков

, МПа Шпоночный паз Шлицы Резьба  
при выпол-нении паза фрезой  
прямо-бочные эволь-вентные  
концевой дисковой  
1,8 1,5 1,4 1,45 2,25 1,43 1,8 1,35  
2,0 1,55 1,7 1,6 2,5 1,49 2,2 1,7  
2,2 1,7 2,05 1,7 2,65 1,55 2,45 2,1  
2,65 1,9 2,4 1,75 2,8 1,6 2,9 2,35  

Таблица 6.7

Отношения и для соединений с натягом

Диаметр вала d, мм при , МПа при , МПа
2,6 3,3 4,0 5,1 1,5 2,0 2,4 3,05
2,75 3,5 4,3 5,4 1,65 2,1 2,6 3,25
2,9 3,7 4,5 5,7 1,75 2,2 2,7 3,4
3,0 3,85 4,7 5,95 1,8 2,3 2,8 3,55
3,1 4,0 4,85 6,15 1,85 2,4 2,9 3,7
3,2 4,1 4,95 6,3 1,9 2,45 3,0 3,8
3,3 4,2 5,1 6,45 1,95 2,5 3,05 3,9
3,35 4,3 5,2 6,6 2,0 2,55 3,1 3,95
Примечание: При установке с натягом колец подшипников табличное значение следует умножить на 0,9.

Если по результатам расчета коэффициент запаса оказывается меньше требуемого, то сопротивление усталости можно существенно повысить, применив поверхностное упрочнение: азотирование, поверхностную закалку токами высокой частоты, дробеструйный наклёп, обкатку роликами и т.д. При этом можно получить увеличение предела выносливости до 50% и более.

 


ПОДШИПНИКИ

 

Подшипники являются опорами вращающихся валов и осей. Главное их назначение – снижение потерь на трение при вращении вала или оси. Кроме этого, некоторые из подшипников служат для фиксации вала или оси от осевого смещения.

Подшипники воспринимают нагрузки от валов и осей и передают их на корпус конструкции.

 

По принципу работы подшипники подразделяются на две большие группы:

· подшипники скольжения;

· подшипники качения.

По направлению воспринимаемой нагрузки подшипники подразделяются на группы:

· радиальные подшипники – воспринимающие радиальную нагрузку (перпендикулярную оси вращения);

· упорные подшипники – воспринимающие осевую нагрузку (параллельную оси вращения);

· радиально-упорные подшипники – воспринимающие, в основном, радиальную и небольшую осевую нагрузку;

· упорно-радиальные подшипники – воспринимающие, в основном, осевую и небольшую радиальную нагрузку.

 

Подшипниковые узлы, кроме самого подшипника, могут включать:

· корпус (который может быть отдельным, а может быть встроенным в конструкцию);

· защитные устройства (крышки, уплотнения);

· смазочные устройства.

 

 


ПОДШИПНИКИ СКОЛЬЖЕНИЯ

Общие сведения

Подшипники скольжения широко применяются в качестве опор валов турбин, двигателей внутреннего сгорания, центробежных насосов, центрифуг, металлообрабатывающих станков, прокатных станов, тяжелых редукторов и т.д.

Подшипники скольжения состоят из участка вала (оси) и вкладыша, конструкция и материалы которых служат целям снижения трения при вращении вала (оси).

Подшипники скольжения чаще всего бывают радиальные (рис. 7.1а). Они имеют цилиндрическую шейку вала и вкладыш в виде втулки. Упорные подшипники обычно называют пятой (рис. 7.1б), а вкладыш – подпятником. Иногда применяют гребенчатые пяты (рис. 7.1в). Значительно реже применяются подшипники конической и сферической формы.

а б в
Рис. 7.1. Типы подшипников скольжения

Для работы с минимальным износом подшипники должны смазываться. Наибольшее применение имеет жидкостная смазка. Применяются также вкладыши из самосмазывающихся материалов, с твердосмазочными покрытиями и газообразными смазочными материалами. В низкоскоростных малоответственных подшипниках может применяться консистентная смазка.

Для того, чтобы между трущимися поверхностями мог длительно существовать масляный слой, в нем должно быть избыточное давление, которое возникает в слое жидкости при вращении шейки вала (гидродинамическая смазка) или создается насосом (гидростатическая смазка).

Основное применение имеют подшипники с гидродинамической смазкой (рис. 7.2). В неподвижном положении вал лежит на поверхности вкладыша. При начале движения он стремится катиться по поверхности вкладыша, выдавливая смазку из зазора (рис. 7.2а). Так как величина зазора незначительная (несколько десятых или сотых долей мм) смазка не успевает выдавливаться из зазора и на поверхности вала возникает гидродинамическое давление, поднимающее вал над поверхностью вкладыша (так называемый гидродинамический клин) (рис. 7.2б). При увеличении скорости вращения толщина слоя масла увеличивается и при наборе определенной частоты вращения, вал повисает, не касаясь поверхности вкладыша, сводя силу трения и скорость износа поверхностей к крайне незначительным величинам. Такой вид трения называют жидкостным трением.

   
а б
Рис. 7.2. Схема работы гидродинамической смазки

Гидродинамическую смазку можно обеспечить в очень широком диапазоне скоростей, кроме очень низких. При работе вал занимает в подшипнике эксцентричное положение (рис. 7.2б) под действием внешних нагрузок.

В подшипниках с гидростатической смазкой давление в поддерживающем слое смазки создают с помощью насоса, подающим его в зазор между шейкой вала и вкладышем (рис. 7.3). Давление смазки в гидросистеме и ее расход определяется зазором между валом и вкладышем, радиальной силой и вязкостью смазки.

Рис. 7.3. Схема работы гидростатической смазки

Достоинства подшипников скольжения:

· Высокая работоспособность при больших скоростях;

· Надежная работа при вибрационных и ударных нагрузках (благодаря демпфирующим свойствам масляной прослойки);

· Бесшумность и плавность работы;

· Простота конструкции;

· Возможность применения разъемных конструкций;

· Небольшие радиальные размеры.

Недостатки подшипников скольжения:

· Чувствительность к режиму смазки;

· Чувствительность к перекосам;

· Значительный расход смазки;

· Высокие потери на трение при пуске, особенно при низких температурах;

· Большая длина.

Область применения подшипников скольжения:

· Подшипники, которые необходимо по условиям сборки выполнять разъемными (например, опоры коленчатых валов);

· Подшипники особо тяжелых валов, для которых трудно или невозможно подобрать подшипники качения (например, гребные валы, опоры валков прокатных станов);

· Подшипники, подверженные значительным вибрационным нагрузкам и ударам;

· Подшипники, требующие малых радиальных размеров (например, близкорасположенных валов);

· Подшипники для особо точного и равномерного вращения (например, в высокоточных станках);

· Подшипники вспомогательных тихоходных малоответственных механизмов.

 

 

Подшипниковые материалы

Антифрикционные свойства трущихся пар зависят от сочетания материалов вала, вкладыша и смазки.

Шейки стальных валов, как правило, закаливают. Чем выше твердость, тем надежнее работа подшипника. Шейки быстроходных валов после цементации закаливают до высокой твердости HRC 55…60 или азотируют.

К материалам вкладышей предъявляются следующие требования:

· теплопроводность, обеспечивающая интенсивный теплоотвод от поверхностей трения, и малый коэффициент линейного расширения во избежание больших изменений зазоров в подшипниках;

· прирабатываемость, обеспечивающая уменьшение кромочных и местных давлений, связанных с упругими деформациями и погрешностями изготовления;

· хорошая смачиваемость маслом и способность образовывать на поверхностях стойкие и быстро восстанавливаемые масляные пленки;

· коррозионная стойкость;

· малый модуль упругости.

 

Материалы вкладышей:

· Антифрикционные чугуны (ГОСТ 1585-79) – серый чугун АЧС, ковкий чугун АЧК, высокопрочный чугун АЧВ – применяются для подшипников тихоходных малонагруженных валов. Чугуны отличаются низкой стоимостью, но требуют отсутствия перекосов при монтаже, отсутствия нагрева при работе. Они чувствительны к режиму смазки, требуют приработки на холостом ходу с постепенным увеличением рабочей нагрузки.

· Баббиты – сплавы на основе олова и свинца, имеют низкую твердость, применяются только в виде заливки или тонкослойных покрытий. Баббиты отличаются хорошей прирабатываемостью и относительно низкими требованиями к твердости шеек вала и к состоянию трущихся поверхностей.

Недостатки баббитов – относительно невысокое сопротивление усталости, ограничивающее их применение в машинах ударного действия и в быстроходных поршневых машинах.

При высоких скоростях и давлениях применяют высокооловянные баббиты Б83, Б88 (p≤ 20 МПа, pv≤ 75 МПа∙м/сек). Во избежание выплавления их применяют при температурах до 110ºС.

Давно применяются оловянно-свинцовые баббиты Б16, БН6 (p≤ 10…15 МПа, pv≤ 30 МПа∙м/сек), которые дешевле, но антифрикционные свойства и коррозионная стойкость у них ниже.

Для тонкослойных покрытий применяют баббит СОС 6-6 (88% свинца, 6% олова и 6% сурьмы). Этот баббит имеет повышенное сопротивление усталости.

· Бронзы. Универсальными антифрикционными свойствами обладают оловянные и оловянно-цинково-свинцовые бронзы. Широко известна оловянно-фосфористая бронза БрО10Ф1, особо эффективная при высоких давлениях и средних скоростях, но обладающая высокой стоимостью из-за высокого содержания олова. Чаще применяются оловянно-цинково-свинцовые бронзы БрО4Ц4С17 и БрО4Ц7С5.

При высоких скоростях и давлениях (до p=30 МПа) и переменных нагрузках (например, у двигателей внутреннего сгорания) применяют свинцовую бронзу БрС30, которая обладает повышенным сопротивлением усталости, предъявляет повышенные требования к твердости и шероховатости шеек вала, а также к смазке, так как окисление масла вызывает коррозию. В ответственных подшипниках рабочую поверхность вкладыша покрывают тонким приработочным слоем из олова, индия или сплава свинца с оловом.

При значительных давлениях и малых скоростях применяют алюминиево-железистые бронзы БрА9Ж4, с обязательной закалкой шейки вала.

· Алюминиево-оловянные антифрикционные сплавы – обладают высокими антифрикционными свойствами и сопротивлением усталости. Сплавы АО9-1 и АО9-2 применяют в подшипниках двигателей судов, тепловозов, тяжелых тракторов.

· Полиметаллические многослойные подшипники – в последнее время получают большое распространение. В частности, для автомобильных двигателей применяют подшипники, имеющие стальную основу, слой свинцовой бронзы толщиной 0,25 мм, служащей податливой подушкой с хорошей теплопроводностью и сопротивлением усталости, тонкий слой никеля или сплава меди с цинком во избежание диффузии олова и, наконец, хорошо прирабатывающийся слой олово-свинец толщиной 25 мкм.

· Металлокерамические материалы – железографитовые (1…3% графита) и бронзографитовые (1…4% графита) – получают из металлического порошка прессованием (150…200 МПа) и спеканием (при температуре 1050…1100ºС в течении 2…3 часов) в атмосфере инертных газов. Они имеют пористую структуру, объем пор – 15…35%, которые заполняются маслом путем специальной пропитки. Такие вкладыши отличаются удовлетворительной работой при скудном смазывании, поэтому их применяют в самосмазывающихся подшипниках, в которых трудно или невозможно обеспечивать надежную смазку обычными средствами. При низких нагрузках они могут длительное время работать, получая масло из пор.

Железографитовые вкладыши дешевле бронзографитовых, хотя и обладают почти такими же антифрикционными свойствами. Обработка резанием не рекомендуется, возможно калибрование.

· Пластмассовые вкладыши отличаются химической инертностью по отношению к материалу вала, технологичностью, хорошей прирабатываемостью, имеют мягкие продукты износа, могут работать с периодической смазкой или даже без смазки, имеют возможность эффективного использования в качестве смазочного материала воды или другой жидкости, являющихся рабочей средой в машине. Их недостатками являются старение, низкая теплопроводность, большой коэффициент линейного расширения, разбухание от поглощаемой влаги, худшее состояние поверхности.

Пластмассовые вкладыши изготавливают из полиамида (капрон, нейлон), фторопластов (тефлон), фенопластов (текстолит), поликарбонатов (дифлон).

· Резиновые вкладыши изготавливают методом горячей вулканизации, двухслойными, в металлической кассете, с продольными канавками для лучшего охлаждения и уноса абразивных частиц. Фрикционный слой делают из более твердой резины, а внутренний – более податливым. Они применяются с водяной смазкой. Используются в гидравлических машинах, для подводных и забортных механизмов. Подшипники из мягкой резины обеспечивают самоустанавливаемость вала и амортизируют его колебания, но несущая способность мала (p=0,1…0,2 МПа). Подшипники из твердой резины имеют несущую способность до 3…5 МПа.

· Вкладыши из твердых пород древесины (гваякового дерева, бокаута, самшита, дуба) пропитанных маслом используются для валов большого диаметра (например, гребные валы судов). Их набирают из брусков и крепят в металлических корпусах.

Применяются также древеснослоистые пластики. Они хорошо работают при смазывании водой. Их тоже набирают из брусков с расположением слоев перпендикулярно к поверхности трения.

· Графитовые вкладыши (порошковые антифрикционные материалы на основе углерода) – применяют в основном для работы без смазки. Они обеспечивают низкий коэффициент трения (0,04…0,05), обладают высокой температурной (от –200 до +1000ºС) и химической стойкостью, высокой теплопроводностью, но плохо сопротивляются ударным нагрузкам. Они также хорошо себя зарекомендовали в быстроходных подшипниках с газовой смазкой.

Наибольшее применение нашли графитофторопластовые (из графита и фторопласта) и графитопластовые (из графита и фенолформальдегидной смолы) материалы.

 

 



Последнее изменение этой страницы: 2016-06-19; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.233.242.204 (0.013 с.)