В-окисление высших жирных кислот. Последовательность реакций окисления. Связь окисления жирных кислот с цитратным циклом и дыхательной цепи. Физиологическое значение. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

В-окисление высших жирных кислот. Последовательность реакций окисления. Связь окисления жирных кислот с цитратным циклом и дыхательной цепи. Физиологическое значение.



Основным способом окисления высших жирных кислот, по крайней мере в отношении общего количества окисляющихся в клетке соединений данного класса, является процесс b-окисления,

открытый Кноопом еще в 1904 г. Этот процесс можно определить как процесс ступенчатого окислительного расщепления высших жирных кислот, в ходе которого идет последовательное отщепление двухуглеродных фрагментов в виде ацетил-КоА со стороны карбоксильной группы активированной молекулы высшей жирной кислоты. Поступающие в клетку высшие жирные кислоты подвергаются активации с превращением их в ацил-КоА (R-CO-SKoA), причем активация жирных кислот происходит в цитозоле. Сам же процесс b-окисления жирных кислот идет в матриксе митохондрий. Ацильные остатки переносятся через внутреннюю мембрану митохондрий с помощью специального переносчика, в качестве которого выступает карнитин (КН). В цитозоле с помощью фермента внешней ацилКоА-карнитинацилтрансферазы остаток высшей жирной кислоты переносится с коэнзима А на карнитин с образованием ацилкарнитина. Ацилкарнитинин при участии специальной карнитин-ацилкар-

нитин-транслоказной системы проходит через мембрану внутрь митохондрии и в матриксе с помощью фермента внутренней ацил-КоА:карнитин-ацилтрансферазы ацильный остаток передается с карнитина на внутримитохондриальный коэнзим А. В результате в матриксе митохондрий появляется активированный остаток жирной кислоты в виде ацил-КоА; высвобожденный карнитин с помощью той же самой транслоказы проходит через мембрану митохондрий в цитозоль, где может включаться в новый цикл переноса. Карнитин-ацилкарнитин-транслоказа, встроенная во внутреннюю мембрану митохондрий, осуществляет перенос молекулы ацилкарнитина внутрь митохондрии в обмен на молекулу карнитина, удаляемую из митохондрии.

Активированная жирная кислота в матриксе митохондрий подвергается ступенчатому циклическому окислению. В результате одного цикла b-окисления радикал жирной кислоты укорачивается на 2 атома углерода, а отщепившийся фрагмент выделяется в виде ацетил-КоА. В ходе одного цикла b-окисления, например,при превращении стеароил-КоА в пальмитоил-КоА с образованием ацетил-КоА, высвобождается 91 ккал/моль свободной энергии, однако основная часть этой энергии накапливается в виде энергии восстановленных коферментов, потери же энергии в виде теплоты составляют лишь около 8 ккал/моль.

Образовавшийся ацетил-КоА может поступать в цикл Кребса, где он будет окисляться до конечных продуктов или же может использоваться для других нужд клетки, например, для синтеза холестерола. Укороченный на 2 атома углерода ацил-КоА вступает в новый цикл b-окисления. В результате нескольких последовательных циклов окисления вся углеродная цепь активированной жирной кислоты расщепляется до "n" молекул ацетил-КоА, причем значение "n" определяется числом атомов углерода в исходной жирной

кислоте. Энергетический эффект одного цикла b-окисления можно оценить исходя из того, в ходе цикла образуются 1 молекула ФАДН2 и 1 молекула НАДН+Н. При их поступлении в цепь дыхательных ферментов будет синтезироваться 5 молекул АТФ (2 + 3). Если образовавшийся ацетил-КоА будет окислен в цикле Кребса, то клетка получит еще 12 молекул АТФ.

Общее количество свободной энергии, выделяющееся при окислении 1 моля стеариновой кислоты составляет около 2632ккал, из них накапливается в виде энергии макроэргических связей синтезированных молекул АТФ около 1100 ккал. Таким образом, аккумулируется примерно 40% всей выделяющейся свободной энергии. Скорость b-окисления высших жирных кислот определяется, во-первых, концентрацией жирных кислот в клетке и, во-вторых, активностью внешней ацил-КоА:карнитин ацилтрансферазы. Активность фермента угнетается малонил-КоА.

43) Биосинтез и окисление кетоновых тел, биологическая роль этих процессов. Диагностическое значение их определения.

Жирные кислоты, поступающие в гепатоциты, активируются и подвергаются b-окислению с образованием ацетилКоА. Именно этот ацетилКоА используется для синтеза ацетоновых тел: ацетоацетата, b-гидроксибутирата и ацетона. На первой стадии из 2х молекул ацетил-КоА образуется ацетоацетил-КоА. Реакция катализируется ферментом ацетил-КоА-ацетилтрансферазой. Затем ацетоацетил-КоА взаимодействует с еще одной молекулой ацетил-КоА под влиянием фермента оксиметилглутарил-КоА-синтетазы. Образовавшийся продукт способен под действием оксиметилглутарил-коА-лиазы расщепляться на ацетоацетат и ацетил-КоА.

Образовавшиеся ацетоновые тела поступают из гепатоцитов в кровь и разносятся к клеткам различных органов. Этот процесс в той или иной мере идет постоянно и ацетоновые тела постоянно присутствуют в крови в концентрации до 30 мг/л. Ежесуточное их выделение с мочой не превышает 20 мг.

Ацетоновые тела в норме достаточно хорошо утилизируются клетками периферических тканей, в особенности это касается скелетных мышц и миокарда, которые значительную часть нужной им энергии получают за счет окисления ацетоновых тел. Лишь клетки центральной нервной системы в обычных условиях практически не утилизируют ацетоновые тела, однако при голодании даже головной мозг от ½ до ¾ свой потребности в энергии может удовлетворять за счет окисления ацетоновых тел.

Ацетоацетат,поступающий в клетки различных тканей, прежде всего подвергается активации. Основным путем активации ацетоацетата в клетках является путь с участием тиафоразы. В гепатоцитах нет этого фермента. Именно поэтому образовавшийся в гепатоцитах ацетоацетат в них не активируется и не окисляется, тем самым создаются условия для «экспорта» ацетоацетата из гепатоцитов в кровь.b-Гидроксибутират в клетках предварительно окисляется с участием НАД+ в ацетоацетат. Эта реакция катализируется ферментом b-гидроксибутиратдегидрогеназой. Ацетон также может окисляться в клетках периферических органов. Возможны два варианта его окисления: во-первых, он может расщепляться до ацетильного и формильного остатков; во-вторых, через пропандиол он может превращаться в пируват. Ацетоновые тела, накапливаясь в крови и в тканях, оказывают ингибирующее действие на липолиз, в особенности это касается расщепления триглицеридов в липоцитах. Биологическая роль этого регуляторного механизма становится понятной, если принять во внимание, что ацтоацетат и гидроксибутират представляют собой достаточно сильные органические кислоты, в связи с чем их избыточное накопление в крови приводит к развитию ацидоза. Снижение уровня липолиза в клетках жировой ткани приводит к уменьшению притока высших жирных кислот в гепатоциты и к снижению скорости образования ацетоновых тел и, следовательно, снижению их содержания в крови.

 

44) Обмен и функции холестерола в организме. Биосинтез холестерола, последовательность реакций до образования мевалоновой кислоты. Представление о дальнейших этапах синтеза, регуляция процесса.

Суточная потребность человека в холестероле составляет

около 1г, причем вся потребность в этом соединении может быть

удовлетворена за счет его эндогенного синтеза. В то же время

экзогенный, т.е. пищевой, холестерол также эффективно усваива

ется организмом. Основным органом, в котором идет синтез холестерола, является печень. В печени синтезируется от 50% до 80% эндогенного холестерола, от 10% до 15% холестерола синтезируется в клетках кишечника, около 5% образуется в коже. Объем

синтеза холестерола в других органах и тканях незначителен,

хотя ферментные системы, обеспечивающие синтез этого соедине

ния, присутствуют в клетках большинства органов и тканей.

Общее содержание холестерола в организме составляет около

140 г. Основная масса этого соединения включена в состав кле

точных мембран. Однако около 10 г холестерола постоянно нахо

дится в плазме крови, входя в состав ее липопротеидов. Кон

центрация холестерола в плазме крови составляет 3,56,8 мМ/л.

причем примерно 2/3 всего холестерола плазмы крови представле

ны в ней в виде стероидов, сложных эфиров холестерола и выс

ших жирных кислот.. Из

быток холестерола в клетках также запасается в виде эфиров

олеиновой кислоты. тогда как в состав мембран входит свободный

холестерол.

Холестерол используется в организме для синтеза желчных кислот, из него также синтезируются стероидные гормоны, в коже из 7-дегидрохолестерола под действием ультрафиолетовой радиации образуется витамин Д.Избыток холестерола выводится из организма с желчью; часть избыточного холестерола может поступать в просвет кишечника непосредственно из его стенки.

Таким образом, холестериновый гомеостаз в организме есть ре

зультат динамического равновесия, во-первых, процессов его

поступления в организм и эндогенного синтеза и, во-вторых,

процессов использования холестерола для нужд клеток и его вы

ведения из организма.

Холестерол синтезируется в клетках из двухуглеродных

группировок ацетилКоА. Процесс синтеза холестерола включает в

себя порядка 35 последовательных энзиматических реакций и мо

жет быть разбит на 5 этапов:

а) образование из ацетилКоА мевалоновой кислоты;

б) образование из мевалоновой кислотой активированных пятиуглеродных группировок изопентенилпирофосфата и диметилал

лилпирофосфата (активных изопреноидных группировок);

в) конденсация изопреноидных группировок с образованием

сквалена;

г) циклизация сквалена в ланостерин;

д) преобразование ланостерина в холестерол.



Поделиться:


Последнее изменение этой страницы: 2016-06-19; просмотров: 1842; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.145.74.54 (0.009 с.)