Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Современные представления о синтезе белка: синтез аминоацил-трнк, представление о синтезе полипептидных цепей на рибосомах. Посттрансляционныый процессинг белковых молекул.Содержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Процесс трансляции представляет собой заключительную фазу реализации генетической информации в системе ее переноса в генеральном направлении: ДНК ––® РНК ––® Белок. Синтез функционально полноценных белковых молекул включает в себя следующие этапы: Ø Подготовка пластического материала для сборки полипептидных цепей на рибосомах — процесс рекогниции (узнавания). Ø Сборка полипептидных цепей на рибосомах в соответствии с информацией, поставляемой на рибосомы мРНК — процесс трансляции. Ø Преобразование синтезированных на рибосомах полипептидных цепей в функционально полноценные белковые молекулы — посттрансляционный процессинг.
Каждая тРНК в своей структуре имеет антикодон, способный к комплементарному взаимодействию с соответствующим кодоном мРНК, однако тРНК не имеют в своей структуре участков, комплементарных той или иной аминокислоте. Присоединение аминокислоты к “своей” тРНК, например, Ала к тРНКАла, осуществляется с помощью специальных ферментов аминоацил-тРНК-синтетаз. Каждая аминоацил-тРНК-синтетаза катализирует двухстадийную реакцию: Ø на первом этапе которой в активном центре фермента связывается молекула ”своей” аминокислоты и молекула АТФ, с образованием аминоациладенилата - остатка аминокислоты, связанного макроэргической связью с фосфатной группой АМФ. Ø На втором этапе к активному центру фермента присоединяется тРНК, антикодон которой комплементарен кодону аминокислоты, связанной в активном центре в виде аминоациладенилата В каждой клетке имеется как минимум 20 различных аминоацил-тРНК-синтетаз, по одной на каждую из 20 аминокислот. Синтез полипептидных цепей на рибосомах Сборка полипептидных цепей белков происходит на рибосомах в соответствии с информацией, поступающей из ядра с м-РНК. Рибосомы эукариот представляют собой клеточную органеллу, состоящую из двух субъединиц: малой и большой В составе рибосомы имеется 4 функциональных центра: 1. центр связывания мРНК; 2. П-центр - центр связывания тРНК, несущей синтезируемую полипептидную цепь; 3. А-центр - центр связывания тРНК, несущей очередную аминокислоту, которая будет присоединяться к синтезируемой полипептидной цепи; 4. Т-центр или пептидилтрансферазный центр, обеспечивающий образование пептидных связей в синтезируемом полипептиде: Процесс трансляции принято делить на три фазы: инициацию, элонгацию и терминацию. Для инициации синтеза полипептида необходимы рибосома, диссоциированная на субъединицы; инициирующая тРНК, в качестве которой в клетках эукариот используется тРНКМет, нагруженная метионином; мРНК; ГТФ; кроме того, необходимо несколько белков-факторов инициации: эФИ-1, эФИ-2, эФИ‑3, эФИ-4 (А, В, С), причем фактор инициации эФИ-3 необходим для диссоциации рибосомы на субъединицы. Инициация начинается с взаимодействия Мет-тРНК с малой субъединицей рибосомы, для этого необходимы факторы инициации ФИ-4 эФИ-2 и ГТФ. Параллельно идет взаимодействие 5'-конца мРНК с КЭП-связывающим белком. Затем мРНК вместе с КЭП-связывающим белком взаимодействует с малой субъединицей рибосомы, нагруженной Мет-тРНК. Далее малая субъединица продвигается по мРНК в направлении от ее КЭПа к 3'-концу, пока не достигнет инициирующего кодона АУГ. Сформировавшийся комплекс, состоящий из малой субъединицы рибосомы, связанной с мРНК и инициаторной Мет-тРНК подучил название инициирующего комплекса. Этот инициирующий комплекс, в состав которого входят также ГТФ и два инициаторных белка, взаимодействует с большой (60S) субъединицей рибосомы. В ходе этого взаимодействия происходит расщепление ГТФ до ГДФ и Ф, высвобождается КЭП-связывающий белок и ряд факторов инициации. После присоединения большой субъединицы рибосомы Мет-тРНК оказывается в П-центре рибосомы, а А-центр свободен и может связывать следующую аминоацил-тРНК, антикодон которой комплементарен кодону мРНК, находящемуся в А-центре рибосомы. В ходе следующей фазы — фазы элонгации — происходит последовательное присоединение аминокислотных остатков к синтезируемой полипептидной цепи в направлении от ее N-конца к С-концу. Процесс элонгации идет циклически, причем в ходе цикла полипептидная цепь увеличивается на один аминокислотный остаток. Цикл элонгации начинается с взаимодействия аминоацил-тРНК (Аа-тРНК), антикодон которой комплементарен кодону мРНК, находящемуся в А-центре рибосомы, с ГТФ и белковым фактором элонгации I (ФЭ-1): Образовавшийся комплекс взаимодействует с рибосомой. В ходе взаимодействия тРНК с аминокислотой связывается в А-центре рибосомы так, что ее антикодон взаимодействует с кодоном мРНК. В результате в А-центре рибосомы оказывается А/а-тРНК, а в П-центре оказывается тРНК, несущая синтезируемую полипептидную цепь (или Мет-тРНК, если речь идет о первом цикле элонгации): Под действием пептидилтрансферазы Т-центра рибосомы синтезируемая полипептидная цепь с тРНК, находящейся в П-центре рибосомы, переносится на NH2-группу аминокислоты, связанной с тРНК в А-центре рибосомы с образованием пептидной связи. Необходимая для образования пептидной связи энергия, высвобождается за счет разрыва макроэргической связи между аминокислотным остатком и тРНК.
После переноса пептидильного остатка свободная тРНК покидает П-центр рибосомы, а рибосома передвигается по мРНК в направлении ее 3'-конца на расстояние, равное одному кодону. В результате перемещения рибосомы в ее П-центре оказывается тРНК, несущая синтезируемый полипептид, а в ее А-центре — следующий кодон матричной РНК. Рибосома готова к новому циклу элонгации. Количество циклов элонгации определяется количеством кодонов в зоне трансляции мРНК. После многих циклов элонгации, в результате которых синтезируется полипептидная цепь того или иного белка, в А-центре рибосомы оказывается один из терминирующих кодонов: УАА, УГА, УАГ. Начинается следующая фаза — фаза терминации транскрипции. Появление в А-центре терминирующего кодона узнается с помощью белковых высвобождающих факторов или R-факторов. R-факторы при участии ГТФ и пептидилтрансферазы Т-центра рибосомы гидролизуют связь между синтезированным полипептидом и тРНК, находящейся в П центре рибосомы. Синтезированный полипептид уходит с рибосомы. Далее из П-центра рибосомы уходит освобожденная от синтезированного полипептида тРНК, а затем рибосома покидает мРНК. Свободная рибосома диссоциирует на субъединицы и может начинать синтез новой полипептидной цепи. Процессинг полипептидных цепей белков
Синтезированная в ходе транскрипции полипептидная цепь должна претерпеть ряд изменений, прежде чем она превратится в функционально полноценную белковую молекулу. Для разных белков характер этих превращений будет различным. Наиболее общими механизмами процессинга являются: Ø отщепление от синтезированной полипептидной цепи N ‑концевого остатка метионина; Ø формирование третичной структуры с образованием дисульфидных мостиков между HS-группами цистеиновых остатков. Ø химическая модификация аминокислотных остатков: гидроксилирование (превращение остатков пролина в гидроксипролин), метилирование (NH2-группы остатков лизина в гистонах), иодирование (остатки тирозина в составе тиреоглобулина) и др. Ø присоединение небелковых группировок при образовании сложных белков. Ø превращение пробелков в функционально активные молекулы путем отщепления от их полипептидных цепей строго определенной части молекулы - ингибиторного пептида. Данный механизм получил название ограниченный избирательный протеолиз. Например, пробелок трипсиноген превращается в каталитически активный трипсин или проинсулин превращается в инсулин.
ВЗАИМОСВЯЗЬ И РЕГУЛЯЦИЯ ОБМЕНА ВЕЩЕСТВ
|
||||
Последнее изменение этой страницы: 2016-06-19; просмотров: 966; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.188.130.151 (0.007 с.) |