Энергия системы зарядов, уединенного проводника и конденсатора. Энергия электростатического поля 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Энергия системы зарядов, уединенного проводника и конденсатора. Энергия электростатического поля



1. Энергия системы неподвижных точечных зарядов. Электростатические силы взаимо­действия консервативны (см. § 57); следовательно, система зарядов обладает потенци­альной энергией. Найдем потенциальную энергию системы двух неподвижных точеч­ных зарядов Q 1и Q 2, находящихся на расстоянии r друг от друга. Каждый из этих зарядов в поле другого обладает потенциальной энергией (см. 58.2) и (58.5)):

где j 12 и j 21 соответственно потенциалы, создаваемые зарядом Q 2 в точке нахожде­ния заряда Q 1 и зарядом Q 1 в точке нахождения заряда Q 2. Согласно (58.5),

поэтому W 1 = W 2 = W и

Добавляя к системе из двух зарядов последовательно заряды Q 3, Q 4 ,..., можно убедиться в том, что в случае n неподвижных зарядов энергия взаимодействия системы точечных зарядов равна

(69.1)

где ji потенциал, создаваемый в той точке, где находится заряд Qi, всеми зарядами, кроме i -го.

2. Энергия заряженного уединенного проводника. Пусть имеется уединенный провод­ник, заряд, емкость и потенциал которого соответственно равны Q, С, j. Увеличим заряд этого проводника на d Q. Для этого необходимо перенести заряд d Q из бесконеч­ности на уединенный проводник, затратив на это работу, равную

Чтобы зарядить тело от нулевого потенциала до j, необходимо совершить работу

(69.2)

Энергия заряженного проводника равна той работе, которую необходимо совер­шить, чтобы зарядить этот проводник:

(69.3)

Формулу (69.3) можно получить и из того, что потенциал проводника во всех его точках одинаков, так как поверхность проводника является эквипотенциальной. Пола­гая потенциал проводника равным j, из (69.1) найдем

 

где - заряд проводника.

3. Энергия заряженного конденсатора. Как всякий заряженный проводник, конден­сатор обладает энергией, которая в соответствии с формулой (69.3) равна

(69.4)

где Q — заряд конденсатора, С — его емкость, Dj — разность потенциалов между обкладками конденсатора.

Используя выражение (69.4), можно найти механическую (пондеромоторную) силу, с которой пластины конденсатора притягивают друг друга. Для этого предположим, что расстояние х между пластинами меняется, например, на величину d x. Тогда действующая сила совершает работу d A=F d x вследствие уменьшения потенциальной энергии системы F d x = — d W, откуда

(69.5)

Подставив в (69.4) выражение (69.3), получим

(69.6)

Производя дифференцирование при конкретном значении энергии (см. (69.5) и (69.6)), найдем искомую силу:

где знак минус указывает, что сила F является силой притяжения.

4. Энергия электростатического поля. Преобразуем формулу (69.4), выражающую энергию плоского конденсатора посредством зарядов и потенциалов, воспользовав­шись выражением для емкости плоского конденсатора (C=e 0 eS/d) и разности потенци­алов между его обкладками (D j = Ed. Тогда

(69.7)

где V= Sd — объем конденсатора. Формула (69.7) показывает, что энергия конден­сатора выражается через величину, характеризующую электростатическое поле, — на­пряженность Е.

Объемная плотность энергии электростатического поля (энергия единицы объема)

(69.8)

Выражение (69.8) справедливо только для изотропного диэлектрика, для которого выполняется соотношение (62.2): Р = æ e 0 Е.

Формулы (69.4) и (69.7) соответственно связывают энергию конденсатора с зарядом на его обкладках и с напряженностью поля. Возникает, естественно, вопрос о локализа­ции электростатической энергии и что является ее носителем — заряды или поле? Ответ на этот вопрос может дать только опыт. Электростатика изучает постоянные во времени поля неподвижных зарядов, т. е. в ней поля и обусловившие их заряды неотделимы друг от друга. Поэтому электростатика ответить на поставленные воп­росы не может. Дальнейшее развитие теории и эксперимента показало, что переменные во времени электрические и магнитные поля могут существовать обособленно, независимо от возбудивших их зарядов, и распространяются в пространстве в виде электромагнитных волн, способных переносить энергию. Это убедительно подтверждает основ­ное положение теории близкодействия о том, что энергия локализована в поле и что носителем энергии является поле.

 

Глава 10. Постоянный электрический ток

§ 70. Электрический ток, сила и плотность тока

В электродинамике — разделе учения об электричестве, в котором рассматриваются явления и процессы, обусловленные движением электрических зарядов или макроско­пических заряженных тел, — важнейшим понятием является понятие электрического тока. Электрическим током называется любое упорядоченное (направленное) движение электрических зарядов. В проводнике под действием приложенного электрического поля Е свободные электрические заряды перемещаются: положительные — по полю, отрицательные — против поля (рис. 146, а), т. е. в проводнике возникает электричес­кий ток, называемый током проводимости. Если же упорядоченное движение электрических зарядов осуществляется перемещением в пространстве заряженного макроскопического тела (рис. 146, б), то возникает так называемый конвекционный ток.

 

Рис.146

 

Для возникновения и существования электрического тока необходимо, с одной стороны, наличие свободных носителей тока — заряженных частиц, способных переме­щаться упорядоченно, а с другой — наличие электрического поля, энергия которого, каким-то образом восполняясь, расходовалась бы на их упорядоченное движение. За направление тока условно принимают направление движения положительных зарядов.

Количественной мерой электрического тока служит сила тока I скалярная физи­ческая величина, определяемая электрическим зарядом, проходящим через поперечное сечение проводника в единицу времени:

Если сила тока и его направление не изменяются со временем, то такой ток называется постоянным. Для постоянного тока

где Q — электрический заряд, проходящий за время t через поперечное сечение провод­ника. Единица силы тока — ампер (А).

Физическая величина, определяемая силой тока, проходящего через единицу площа­ди поперечного сечения проводника, перпендикулярного направлению тока, называется плотностью тока:

Выразим силу и плотность тока через скорость á v ñ упорядоченного движения зарядов в проводнике. Если концентрация носителей тока равна n и каждый носитель имеет элементарный заряд е (что не обязательно для ионов), то за время dt через поперечное сечение S проводника переносится заряд dQ=ne ávñ S d t. Сила тока

а плотность тока

(70.1)

Плотность тока — вектор, ориентированный по направлению тока, т. е. направление вектора j совпадает с направлением упорядоченного движения положительных зарядов. Единица плотности тока — ампер на метр в квадрате (А/м2).

Сила тока сквозь произвольную поверхность S определяется как поток вектора j, т. е.

(70.2)

где d S = n d S (n — единичный вектор нормали к площадке d S, составляющей с век­тором j угол a).

 

§ 71. Сторонние силы. Электродвижущая сила и напряжение

Если в цепи на носители тока действуют только силы электростатического поля, то происходит перемещение носителей (они предполагаются положительными) от точек с большим потенциалом к точкам с меньшим потенциалом. Это приведет к выравнива­нию потенциалов во всех точках цепи и к исчезновению электрического поля. Поэтому для существования постоянного тока необходимо наличие в цепи устройства, способ­ного создавать и поддерживать разность потенциалов за счет работы сил неэлект­ростатического происхождения. Такие устройства называются источниками тока. Силы неэлектростатического происхождения, действующие на заряды со стороны источников тока, называются сторонними.

Природа сторонних сил может быть различной. Например, в гальванических элементах они возникают за счет энергии химических реакций между электродами и электролитами; в генераторе — за счет механической энергии вращения ротора генератора и т. п. Роль источника тока в электрической цепи, образно говоря, такая же, как роль насоса, который необходим для перекачивания жидкости в гидравлической системе. Под действием создаваемого поля сторонних сил электрические заряды движутся внутри источника тока против сил электростатического поля, благодаря чему на концах цепи поддерживается разность потенциалов и в цепи течет постоянный электрический ток.

Сторонние силы совершают работу по перемещению электрических зарядов. Физи­ческая величина, определяемая работой, совершаемой сторонними силами при переме­щении единичного положительного заряда, называется электродвижущей силой (э.д.с.), действующей в цепи:

(71.1)

Эта работа производятся за счет энергии, затрачиваемой в источнике тока, поэтому величину можно также называть электродвижущей силой источника тока, включен­ного в цепь. Часто, вместо того чтобы сказать: «в цепи действуют сторонние силы», говорят: «в цепи действует э.д.с.», т. е. термин «электродвижущая сила» употребляет­ся как характеристика сторонних сил. Э.д.с., как и потенциал, выражается в вольтах (ср. (84.9) и (97.1)).

Сторонняя сила F ст, действующая на заряд Q 0, может быть выражена как

где Ест — напряженность поля сторонних сил. Работа же сторонних сил по перемещению заряда Q 0 на замкнутом участке цепи равна

(71.2)

Разделив (71.2) на Q 0, получим выражение для э. д. с., действующей в цепи:

т. е. э.д.с., действующая в замкнутой цепи, может быть определена как циркуляция вектора напряженности поля сторонних сил. Э.д.с., действующая на участке 12, равна

(71.3)

На заряд Q 0 помимо сторонних сил действуют также силы электростатического поля F e= Q 0 E. Таким образом, результирующая сила, действующая в цепи на заряд Q 0, равна

Работа, совершаемая результирующей силой над зарядом Q 0 на участке 12, равна

Используя выражения (97.3) и (84.8), можем записать

(71.4)

Для замкнутой цепи работа электростатических сил равна нулю (см. § 57), поэтому в данном случае

Напряжением U на участке 12 называется физическая величина, определяемая работой, совершаемой суммарным полем электростатических (кулоновских) и сторон­них сил при перемещении единичного положительного заряда на данном участке цепи. Таким образом, согласно (71.4),

Понятие напряжения является обобщением понятия разности потенциалов: напря­жение на концах участка цепи равно разности потенциалов в том случае, если на этом участке не действует Э.д.с., т. е. сторонние силы отсутствуют.

§ 72. Закон Ома. Сопротивление проводников

Немецкий физик Г. Ом (1787;—1854) экспериментально установил, что сила тока I, текущего по однородному металлическому проводнику (т. е. проводнику, в котором не действуют сторонние силы), пропорциональна напряжению U на концах проводника:

(72.1)

где R — электрическое сопротивление проводника.

Уравнение (72.1) выражает закон Ома для участка цепи (не содержащего источника тока): сала тока в проводнике прямо пропорциональна приложенному напряжению и обратно пропорциональна сопротив­лению проводника. Формула (72.1) позволяет установить единицу сопротивления — ом (Ом): 1 Ом — сопротивление такого проводника, в котором при напряжении 1 В течет постоянный ток 1 А.

Величина

называется электрической проводимостью проводника. Единица проводимости — сименс (См): 1 См — проводимость участка электрической цепи сопротивлением 1 Ом.

Сопротивление проводников зависит от его размеров и формы, а также от матери­ала, из которого проводник изготовлен. Для однородного линейного проводника сопротивление R прямо пропорционально его длине l и обратно пропорционально площади его поперечного сечения S:

(72.2)

где r — коэффициент пропорциональности, характеризующий материал проводника и называемый удельным электрическим сопротивлением. Единица удельного элект­рического сопротивления — ом×метр (Ом×м). Наименьшим удельным сопротивлением обладают серебро (1,6×10–8 Ом×м) и медь (1,7×10–8 Ом×м). На практике наряду с медными применяются алюминиевые провода. Хотя алюминий и имеет большее, чем медь, удельное сопротивление (2,6×10–8 Ом×м), но зато обладает меньшей плотностью по сравнению с медью.

Закон Ома можно представить в дифференциальной форме. Подставив выражение для сопротивления (72.2) в закон Ома (72.1), получим

(72.3)

где величина, обратная удельному сопротивлению,

называется удельной электрической проводимостью вещества проводника. Ее едини­ца — сименс на метр (См/м).

Учитывая, что U / l = Е — напряженность электрического поля в проводнике, I/S = j — плотность тока, формулу (72.3) можно записать в виде

(72.4)

Так как в изотропном проводнике носители тока в каждой точке движутся в направле­нии вектора Е, то направления j и Е совпадают. Поэтому формулу (98.4) можно записать в векторном виде

(72.5)

Выражение (72.5) — закон Ома в дифференциальном форме, связывающий плотность тока в любой точке внутри проводника с напряженностью электрического поля в этой же точке. Это соотношение справедливо и для переменных полей.

Опыт показывает, что в первом приближении изменение удельного сопротивления, а значит и сопротивления, с температурой описывается линейным законом:

где r и r 0, R и R 0 соответственно удельные сопротивления и сопротивления провод­ника при t и 0°С, aтемпературный коэффициент сопротивления, для чистых металлов (при не очень низких температурах) близкий к 1/273 К–1. Следовательно, температур­ная зависимость сопротивления может быть представлена в виде

где Т — термодинамическая температура.

 

Рис. 147

 

Качественный ход температурной зависимости сопротивления металла представлен на рис. 147 (кривая 1). Впоследствии было обнаружено, что сопротивление многих металлов (например, Al, Pb, Zn и др.) и их сплавов при очень низких температурах TK (0,14—20 К), называемых критическими, характерных для каждого вещества, скачко­образно уменьшается до нуля (кривая 2), т. е. металл становится абсолютным провод­ником. Впервые это явление, названное сверхпроводимостью, обнаружено в 1911 г. Г. Камерлинг-Оннесом для ртути. Явление сверхпроводимости объясняется на основе квантовой теории. Практическое использование сверхпроводящих материалов (в об­мотках сверхпроводящих магнитов, в системах памяти ЭВМ и др.) затруднено из-за их низких критических температур. В настоящее время обнаружены и активно исследуют­ся керамические материалы, обладающие сверхпроводимостью при температуре выше 100 К.

На зависимости электрического сопротивления металлов от температуры основано действие термометров сопротивления, которые позволяют по градуированной взаимо­связи сопротивления от температуры измерять температуру с точностью до 0,003 К. Термометры сопротивления, в которых в качестве рабочего вещества используются полупроводники, изготовленные по специальной технологии, называются термисторами. Они позволяют измерять температуры с точностью до миллионных долей кельвин.

 

§ 73. Работа и мощность тока. Закон Джоуля — Ленца

Рассмотрим однородный проводник, к концам которого приложено напряжение U. За "время d t через сечение проводника переносится заряд d q=I d t. Так как ток представляет собой перемещение заряда d q под действием электрического поля, то, по формуле (84.6), работа тока

(73.1)

Если сопротивление проводника R, то, используя законОма (72.1), получим

(73.2)

Из (73.1) и (73.2) следует, что мощность тока

(73.3)

Если сила тока выражается в амперах, напряжение — в вольтах, сопротивле­ние — в омах, то работа тока выражается в джоулях, а мощность — в ваттах. На практике применяются также внесистемные единицы работы тока: ватт-час (Вт×ч) и киловатт-час (кВт×ч). 1 Вт×ч — работа тока мощностью 1 Вт в течение 1 ч; 1 Вт×ч=3600 Bт×c=3,6×103 Дж; 1 кВт×ч=103 Вт×ч= 3,6×106 Дж.

Если ток проходит по неподвижному металлическому проводнику, то вся работа тока идет на его нагревание и, по закону сохранения энергии,

(73.4)

Таким образом, используя выражения (73.4), (73.1) и (73.2), получим

(73.5)

Выражение (73.5) представляет собой закон ДжоуляЛенца, экспериментально уста­новленный независимо друг от друга Дж. Джоулем и Э. X. Ленцем.

Выделим в проводнике элементарный цилиндрический объем d V= d S d l (ось цилин­дра совпадает с направлением тока), сопротивление которого По закону Джоуля — Ленца, за время d t в этом объеме выделится теплота

Количество теплоты, выделяющееся за единицу времени в единице объема, называется удельной тепловой мощностью тока. Она равна

(73.6)

Используя дифференциальную форму законаОма (j=gЕ) и соотношение r= 1 /g, получим

(73.7)

Формулы (73.6) и (73.7) являются обобщенным выражением закона Джоуля—Ленца в дифференциальной форме, пригодным для любого проводника.

Тепловое действие тока находит широкое применение в технике, которое началось с открытия в 1873 г. русским инженером А. Н. Лодыгиным (1847—1923) лампы накаливания. На нагревании проводников электрическим током основано действие элект­рических муфельных печей, электрической дуги (открыта русским инженером В. В. Петровым (1761—1834)), контактной электросварки, бытовых электронагрева­тельных приборов и т. д.

 

§ 74. Закон Ома для неоднородного участка цепи

Мы рассматривали закон Ома (см. (98.1)) для однородного участка цепи, т. е. такого, в котором не девствует э.д.с. (не действуют сторонние силы). Теперь рассмотрим неоднородный участок цепи, где действующую э.д.с. на участке 12 обозначим через а приложенную на концах участка разность потенциалов — через j 1 —j 2.

Если ток проходит по неподвижным проводникам, образующим участок 1—2, то работа А 12 всех сил (сторонних и электростатических), совершаемая над носителями тока, по закону сохранения и превращения энергии равна теплоте, выделяющейся на участке. Работа сил, совершаемая при перемещении заряда Q 0 на участке 12, согласно (71.4),

(74.1)

Э.д.с. как и сила тока I, величина скалярная. Ее необходимо брать либо с положительным, либо с отрицательным знаком в зависимости от знака работы, совершаемой сторонними силами. Если э.д.с. способствует движению положительных зарядов в выбранном направлении (в направлении 1—2), то > 0. Если э.д.с. препятствует движению положительных зарядов в данном направлении, то < 0.

За время t в проводнике выделяется теплота (см. (73.5))

(74.2)

Из формул (74.1) и (74.2) получим

(74.3)

откуда

(74.4)

Выражение (74.3) или (74.4) представляет собой закон Ома для неоднородного участка цепи в интегральной форме, который является обобщенным законом Ома.

Если на данном участке цепи источник тока отсутствует ( =0), то из (74.4) приходим к закону Ома для однородного участка цепи (72.1):

(при отсутствии сторонних сил напряжение на концах участка равно разности потенци­алов (см. § 71)).

Если же электрическая цепь замкнута, то выбранные точки 1 и 2 со­впадают, j 1= j 2; тогда из (74.4) получаем закон Ома для замкнутой цепи:

где - э.д.с., действующая в цепи, R — суммарное сопротивление всей цепи. В общем случае R=r+R 1, где r — внутреннее сопротивление источника тока, R 1 со­противление внешней цепи. Поэтому законОма для замкнутой цепи будет иметь вид

Если цепь разомкнута и, следовательно, в ней ток отсутствует (I = 0), то из закона Ома (74.4) получим, что =j 1 —j 2, т. е. э.д.с., действующая в разомкнутой цепи, равна разности потенциалов на ее концах. Следовательно, для того чтобы найти э.д.с. источника тока, надо измерить разность потенциалов на егоклеммах при разомкнутой цепи.

 



Поделиться:


Последнее изменение этой страницы: 2016-04-25; просмотров: 1767; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.119.107.96 (0.076 с.)