Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Проводниковые материалы и сплавы различного применения

Поиск

Проводниковые материалы и сплавы различного применения используются в качестве специальных проводниковых материалов с особыми свойствами, например магнитными, или материалов, обладающих высокой тугоплавкостью или химической стойкостью.

 

Благородные металлы

Группу благородных металлов (серебро, платина, палладий, зо­лото) составляют металлы, обладающие наибольшей химической стойкостью к условиям окружающей среды и действию агрессив­ных сред (кислот, щелочей).

Основные свойства благородных металлов приведены в табл. 3.

Таблица 3. Основные свойства благородных металлов

Серебро Ag - белый блестящий металл со следующими свойствами:

самый электропроводный металл (удельное электрическое сопро­тивление при нормальной температуре r = 0,016 мкОм×м);

имеет высокие механические свойства (предел прочности при ра­стяжении = 200 МПа, относительное удлинение при разрыве примерно 50%), что позволяет промышленно изготавливать про­водники различного диаметра, включая микропровода диаметром 20 мкм и менее;

при напылении образует прочные покрытия на диэлектриках;

при повышенных температурах и влажности атомы серебра миг­рируют по поверхности и внутрь диэлектрика, вызывая нарушение работы устройства;

химическая стойкость ниже, чем у других благородных металлов;

образует окислы с высокой электропроводностью;

образует пленки сернистых соединений с повышенным удельным сопротивлением, что требует защиты серебряных покрытий лака­ми или тонким слоем более стойкого металла, например палладия;

остродефицитный материал.

Серебро используют в производстве конденсаторов в чистом виде и сплавах как материал для слаботочных контактов, в виде гальванических покрытий в ответственных ВЧ и СВЧ устройствах и тонких токопроводящих пленок в печатных платах, в монтаж­ных проводах. Оно входит в состав тугоплавких серебряных при­поев.

Платина Pt - светло-серый металл со следующими свой­ствами:

не соединяется с кислородом;

наиболее химически стойкий (устойчив к большинству кислот);

имеет высокую пластичность (предел прочности при растяже­нии после отжига примерно 150 МПа, относительное удлинение при разрыве 30..32%);

легко поддается механической обработке;

образует спаи с легкоплавкими стеклами благодаря близости коэффициентов линейного расширения;

редко применяется по причине высокой стоимости.

Платину используют как материал для сеток в мощных генера­торных лампах, при изготовления термопар в паре с платинородием для измерения высоких температур (до 1600°С), для особо тон­ких нитей (диаметром примерно 1 мкм) в подвижных системах элек­трометров. Платина входит в состав проводящих паст, вжигая ко­торые на монолитные керамические конденсаторы, получают элек­троды.

Палладий Pd - белый пластичный металл, по многим свойствам близкий к платине, в ряде случаев служит его замените­лем. В отожженном состоянии имеет предел прочности на растяжение = 200 МПа при относительном растяжении на разрыв до 40%.

Получают электроды на керамических конденсаторах вжиганием палладиевой пасты наряду с платиновой. Палладий и его спла­вы с серебром и медью применяют в качестве контактных материа­лов. Благодаря высокой проницаемости для водорода его приме­няют в электровакуумной технике для очистки водорода.

Золото Аu - металл желтого цвета со следующими свой­ствами:

имеет высокую пластичность (относительное удлинение при раз­рыве 40%), что позволяет получать фольгу толщиной 0,08 мкм и менее (это в 250 раз тоньше человеческого волоса);

коррозионную стойкость к образованию сернистых пленок при комнатной температуре и при нагревании;

химическую стойкость.

Золото в чистом виде и в виде сплавов с платиной, серебром, ни­келем, цирконием, имеющими повышенную твердость, хорошую эро­зионную и коррозионную стойкость, применяют для изготовления прецизионных контактов, малогабаритных реле, электродов фото­элементов, для вакуумного напыления тонких пленок полупровод­никовых и гибридно-пленочных интегральных схем, золочения кон­тактных поверхностей электронных ламп СВЧ, корпусов микросхем.

 

Тугоплавкие металлы

К тугоплавким относят металлы с температурой плавления бо­лее 1700°С. Эти металлы, как правило, химически устойчивы при низких температурах, но при повышенных температурах активно взаимодействуют с атмосферой. Поэтому изделия из них эксплуа­тируют в вакууме или среде инертных газов (аргон Аr, азот N2 и др.). Механическая обработка тугоплавких металлов затруднена из-за их повышенной твердости и хрупкости.

Тугоплавкие металлы (вольфрам W, рений Re, молибден Мо, тантал Та, титан Ti, ниобий Nb, цирконий Zr, гафний Gf) применя­ют в электровакуумной технике, полупроводниковом производстве и микроэлектронике, для подвижных контактов и в качестве мате­риала для сверхпроводников. Основные свойства некоторых тугоп­лавких металлов приведены в табл. 3.

 

Таблица 3. Основные свойства тугоплавких металлов

Вольфрам W - светло-серый металл, который обла­дает следующими свойствами:

наиболее высокая температура плавления;

очень большая плотность;

наименьшее значение температурного коэффициента линейно­го расширения ТК l изо всех чистых металлов, применяемых в ваку­умной технике;

сравнительно дорогостоящ, с трудом обрабатывается и поэто­му применяется только там, где его нельзя заменить.

Он получается из вольфрамитовой руды в результате сложной технологической обработки.

Сравнительно толстые вольфрамовые изделия с мелкокристал­лической структурой очень хрупкие вследствие высокой прочнос­ти отдельно взятых кристаллов при очень слабом их сцеплении меж­ду собой.

Волокнистая структура металла, создаваемая ковкой и волоче­нием, обеспечивает высокую механическую прочность и гибкость тонких вольфрамовых нитей, диаметр которых может быть менее 10 мкм. Применение вольфрама для изготовления нитей ламп на­каливания было впервые предложено русским изобретателем А.Н.Лодыгиным в 1890 г. Это свойство используют при изготовле­нии термически согласованных спаев вольфрама с тугоплавкими стеклами. Основная область применения вольфрама - изготовле­ние нитей накала осветительных ламп, катодов прямого и косвен­ного накала мощных генераторных ламп, рентгеновских трубок, размыкающих контактов реле, испарителей для нанесения в вакуу­ме тонких пленок различных материалов. Для контактов с больши­ми значениями разрываемой мощности используют металлокера-мические материалы на основе порошка вольфрама.

Молибден Мо - близкий по своим свойствам к воль­фраму металл, но почти в 2 раза легче последнего. Он обладает сле­дующими свойствами:

самое низкое удельное электрическое сопротивление r из всех тугоплавких металлов;

допустимая рабочая температура ниже, чем у вольфрама;

окисление начинается с температуры 500 °С.

Получают молибден из руды молибденита Mo2S по примерно такой же технологии, как и вольфрам.

Структура кованого и тянутого молибдена сходна со структу­рой образца вольфрама. Однако отожженный мелкозернистый мо­либден обладает хорошей пластичностью и его механическая обра­ботка не вызывает особых затруднений.

Молибден применяют для изготовления анодов и сеток генера­торных ламп, крючков для поддерживания вольфрамовых нитей, теплоотводов в корпусах мощных ВЧ и СВЧ полупроводниковых приборов, в качестве разрывных электрических контактов, в паре с вольфрамом для изготовления термопар, рассчитанных на измере­ния температур до 2000 °С в инертных средах и вакууме.

 

Ртуть Hg

Ртуть - единственный чистый металл, который при нормальной температуре находится в жидком состоянии. Он обладает следую­щими свойствами:

легко испаряется даже при комнатной температуре, и пары ее очень вредны;

применение паров ртути в газоразрядных приборах обусловле­но более низким потенциалом ионизации по сравнению с обычны­ми и инертными газами;

чистая ртуть и ее соединения относятся к ядовитым веществам;

в ртути хорошо растворяются щелочные и редкоземельные ме­таллы (магний, алюминий, цинк, олово, свинец, кадмий, платина, серебро, золото);

слабо растворяются в ртути медь и никель;

не растворяются в ртути железо и титан.

Получают ртуть металлургическим способом, подвергая ее мно­гократной очистке. Завершающей операцией является вакуумная перегонка при температуре примерно 200 °С.

Применяют ртуть в лампах дневного света, для ртутных контак­тов в реле, в качестве жидкого катода в ртутных выпрямителях, в ртутных лампах.

 

ПОЛУПРОВОДНИКОВЫЕ МАТЕРИАЛЫ

 

Полупроводниковые материалы обладают проводимостью, кото­рой можно управлять, изменяя напряжение, температуру, освещенность и другие факторы. По способности проводить электрический ток по­лупроводники занимают промежуточное положение между провод­никами и диэлектриками. Способность проводить электрический ток характеризуется удельным электрическим сопротивлением или удель­ной электрической проводимостью . Диапазон значений удельного электрического сопротивления для проводников при комнатной тем­пературе составляет от 1,6•10-8 до 1•10-6 Ом•м. Для низкочастотных изоляционных материалов удельное электрическое сопротивление изменяется от 106... 108 до 1014.. 1016 Ом•м. Удельное электрическое со­противление для полупроводников составляет 10-6…109 Ом-м. Эти гра­ницы условны и в определенном диапазоне перекрываются. Это свя­зано с особенностями этих групп материалов.

Одной из особенностей полупроводниковых материалов явля­ется, их поведение при изменении температуры. У проводниковых материалов при температуре, стремящейся к нулю, удельная электрическая проводимость увеличивается, а при переходе в сверхпроводящее состояние - приобретает бесконечно большие значения (рис. 4.1). В отличие от проводников у полупроводников при умень­шении температуры их удельная элек­трическая проводимость уменьшает­ся, а при стремлении температуры к О К полупроводники прекращают проводить электрический ток и пере­ходят в разряд диэлектриков. При по­вышении температуры удельная элек­трическая проводимость полупроводников резко увеличивается.

Рис. 4.1. Зависимость удельной проводимости металлов (1) и полупроводников (2) от температуры

 

Такой характер поведения полупроводни­ков при изменении температуры позволяет использовать тепло для управления их удельной электрической проводимостью.

Поведение полупроводника зависит также от его внутренней структуры. В проводниковых материалах проводимость связана с появлением свободных зарядов, что вызвано изменением темпера­туры и внутренним строением проводника. Для появления свободных носителей заряда в полупроводниковом материале требуется внешняя энергия (тепловая, механическая нагрузка, облучение ядер­ными частицами, электрическое и магнитное поля и т.д.). Если но­сители заряда появились под действием тепла, то они называются равновесными. В результате воздействия на полупроводник других видов энергии образуются дополнительные неравновесные носите­ли зарядов.

Электропроводность полупроводника резко изменяется при вве­дении в него даже незначительного числа атомов примесного ве­щества. Она зависит также не только количества, но и вида посто­роннего элемента. Например, при введении в химически чистый гер­маний 0,001 % мышьяка его удельная проводимость увеличивается в 10 000 раз.

Полупроводники допускают обратное преобразование электри­ческой энергии в тепловую, световую или механическую.

 

 

СВОЙСТВА ПОЛУПРОВОДНИКОВ

 

Свойства полупроводниковых материалов характеризуются сле­дующими показателями: собственная и примесная проводимости полупроводников, электропроводность полупроводников, оптические и фотооптические явления в полупроводниках, электронные процессы на поверхности полупроводников, контактные явления в полупроводниках.

1) Собственная проводимость полупроводников может быть рассмотрена на примере кремния, который является элементом IV группы Периодической системы химических элементов Д. И Менделеева. Эти элементы образуют алмазоподобную модификацию гранецентрированной кубической решетки, в которой каждый атом, распо­ложенный в узле кристаллической решетки, окружен четырьмя дру­гими атомами и связан с ними ковалентной связью. Так как при ковалентной связи каждый внешний электрон принадлежит одно­временно двум атомам, то внешние оболочки атомов содержит по восемь электронов. При этом все электроны внешних оболочек уча­ствуют в образовании ковалентных связей и свободные носители, создающие электропроводность, отсутствуют (рис. 4.2, а) Для того чтобы электрон превратился в свободный носитель заряда, необходимо сообщить ему дополнительную энергию, достаточную для разрыва ковалентной связи. Такая энергия определяется шириной запретной зоны и называется энергией активации (рис. 4. 3).

 

Рис. 4.2. Модель кристаллической решетки кремния

 

При разрыве ковалентной связи освободившийся электрон под действием тепловой энергии хаотически движется по объему полу­проводника. На месте оторвавшегося электрона остается положи­тельно заряженная незаполненная связь с зарядом, который равен заряду электрона, называемая дыркой. На зонной диаграмме (рис. 4.3) электрону соответствует зона проводимости Wc, а дырке - не­занятое электроном состояние в валентной зоне Wv. При отсутствии внешнего электрического поля дырка, как и электрон, совершает хаотические движения.

При этом сама дырка, в отличие от электрона, не перемещается по кристаллу. Ее движение связано с тем, что за счет энергии тепловых колебаний решетки электрон соседней ковалентной связи может пополнить свободную ковалентную связь в атоме с дыркой. В резуль­тате этого атом, у которого за­полняются все связи, становится нейтральным, а в атоме, потеряв­шем электрон, образуется дырка (рис. 4.2, б). Таким образом со­здается впечатление движения дырок.

При действии на полупровод­ник внешнего электрического поля электрон, обладая отрицательным зарядом, перемещается в направлении противоположном направлению внешнего поля, достигая скорости v. Отношение средней скорости дрейфа электрона v к напряженности электрического поля Е называют под­вижностью электрона, м2/(В×с),

Подвижность электронов и дырок в собственном полупроводнике может быть различна, так как механизм перемещения в электрическом поле свободных электронов и электронов, которые перемещаются из ковалентных связей по незаполненным связям дырок, различен. Подвижность электронов, как правило, выше подвижности дырок.

Концентрация свободных электронов n в полупроводнике в отличие от металлов значительно ниже концентрации атомов..

Процесс образования свободных отрицательно заряженных элек­тронов проводимости и положительно заряженных дырок прово­димости называют генерацией электронно-дырочных пар.

Одновременно с генерацией электронно-дырочных пар в полупроводнике происходит и обратный процесс, когда электроны возвращаются из зоны проводимости в валентную зону с выделением W. Этот процесс называют рекомбинацией носителей зарядом.

Проводимость полупроводника, которая возникает в результате разрыва собственных ковалентных связей, называется собственной.

Собственная электропроводность полупроводника складыва­ется из электронной электропроводности и дырочной электро­проводности :

2) Примесная проводимость полупроводников обусловлена несовер­шенством кристаллической структуры полупроводника. Дефекты в кристаллической решетке вызывают образование дополнительных энергетических уровней внутри запретной зоны (рис. 4.4). Благодаря этому для перехода электрона с дополнительного уровня в зону про­водимости или из валентной зоны на дополнительный уровень требу­ется энергия, меньше ширины запретной зоны W. В случае перехода электрона с дополнительного энергетического уровня в зону прово­димости появляется дополнительный электрон проводимости. При переходе электрона с валентной зоны на дополнительный энергети­ческий уровень образуется дополнительная дырка проводимости.

Если в кристаллической решетке кремния находится атом при­меси, который представляет собой элемент V группы Периодичес­кой системы химических элементов Д. И. Менделеева, например фос­фор (рис. 4.5), то четыре из пяти валентных электронов фосфора будут участвовать в формировании ковалентных связей с соседни­ми атомами основного элемента кремния. Пятый валентный элект­рон фосфора связан только со своим атомом, и прочность этой свя­зи много меньше прочности ковалентной связи. Для перехода это­го электрона на дополнительный энергетический уровень Wд (см. рис. 4.4) требуется энергия, много меньше энергии ширины запрет­ной зоны W. Оторвавшийся от атома фосфора пятый электрон превращается в электрон проводимости. На месте оторвавшегося электрона образуется дырка, которую не могут за­полнить электроны других атомов фосфора, так как концентрация его в кремнии очень мала и его атомы расположены далеко друг от дру­га.

Следовательно, дырка остает­ся неподвижной, дырочная прово­димость в таком полупроводнике отсутствует и его проводимость носит электронный характер.

Полупроводники с преобладанием электронной электропровод­ности называют электронными или n-типа (и - nigative - отрица­тельный). Электроны в полупроводнике n-типа называют основны­ми носителями заряда, а дырки - неосновными носителями.

Дефекты, которые вызывают появление в полупроводнике до­полнительных свободных электронов, называют донорами, а элект­ропроводность, обусловленную донорной примесью, начинают электронной. Энергетические уровни Wд при электронной прово­димости расположены вблизи зоны проводимости Wc (см. рис. 4.4).

 

 

Рис. 4.5. Модели кристаллической решетки донорного (а) и акцепторного (б) полупроводников

 

Если в кристаллической решетке кремния находится атом примеси, который представляет собой элемент III группы таблицы Д. И. Мен­делеева, например бора, то все три валентных электрона бора уча­ствуют в образовании ковалентных связей с кремнием. А одна связь кремния остается незаполненной. Эту связь можно заполнить электроном соседнего атома кремния, образовав четвертую ковалентную связь с примесным атомом бора. Для этого электрон должен полу­чить энергию Wа, значительно меньшую, чем энергия запретной зоны (см. рис. 4.4).

Приняв дополнительный электрон, атом бора ионизируется и ста­новится отрицательным ионом. При этом одна из четырех связей соседнего атома кремния остается незавершенной, т.е. образуется дырка. В результате тепловых колебаний решетки эта незавершен­ная связь может быть заполнена электроном соседнего атома, обра­зуя новую дырку. Таким образом в результате исчезновения одних дырок и образования новых происходит хаотичное движение дырок в пределах кристалла, которые являются носителями заряда. Поэто­му электропроводность полупроводника носит дырочный характер.

Дефекты, которые вызывают появление в полупроводнике дополнительных дырок проводимости, называют акцепторными, а электропроводность, обусловленную акцепторной примесью, - ды­рочной. Энергетические уровни акцепторных дефектов Wd как пра­вило, находятся вблизи потолка валентной зоны Wv. Соответствен­но полупроводники с преобладанием дырочной электропроводно­сти называют дырочными или р-типа (р - positive - положительный). В полупроводнике р-типа основными носителями заряда являются дырки, а неосновными - электроны.

Введение примесей в полупроводник приводит к появлению при­месной электропроводности, возникающей в результате ионизации атомов примесей. В отличие от собственной примесная электропро­водность образуется благодаря наличию носителей заряда только одного знака (электронов в полупроводниках n-типа и дырок в по­лупроводниках p-типа).

Возможность управлять значением и типом электропроводнос­ти полупроводников в результате введения примесей лежит в осно­ве создания всех полупроводниковых приборов.

Процесс контролируемого введения в полупроводник необхо­димых примесей называют легированием.

Если примеси внедряются между узлами кристаллической решет­ки, то их называют примесями внедрения. При этом тип проводимо­сти определяется в основном относительными размерами атома.

В том случае, когда атом примеси замещает атом полупроводника и занимает его место в узле кристаллической решетки, то та­кие примеси называют примесями замещения.

Атомы многих примесей могут и замещать атомы полупровод­ника в узлах кристаллической решетки, и внедряться в междоузлие. Такие примеси называют амфотерными. Они могут быть донорами и акцепторами.

Реальные полупроводниковые материалы содержат донорные и акцепторные примеси. Если концентрация донорных примесей Nд больше концентрации акцепторных примесей Nа, то концентрация свободных электронов будет больше концентрации дырок (n>р). Электроны являются основными носителями, а дырки - неоснов­ными, и в полупроводнике преобладает электронная электропроводность.

Когда концентрация акцепторных примесей Na больше концентрации донорных примесей Nд, то основными носителями заряда становятся дырки и в полупроводнике преобладает дырочная электропроводность.

Примеси, которые не оказывают влияния на электропроводность полупроводников, называют нейтральными.

На свойства полупроводниковых материалов оказывают влияние также и другие дефекты кристаллической структуры: дислокации, вакансии и др. Но управлять электропроводностью полупроводников, используя эти дефекты, невозможно. Поэтому в производстве стремятся получить полупроводниковые материалы с минимально возможным содержанием дефектов кристаллической структуры, а затем производят легирование.

3) Электропроводность полупроводников.

При отсутствии внешнего электрического поля носители заряда в полупроводнике (электроны и дырки) совершают хаотичные движения в пределах кристалла. В результате приложения внешнего поля электроны начинают двигаться в направлении, противоположном направлению поля, а дырки - в направлении поля.

В собственном полупроводнике носителями заряда являются свободные электроны и дырки, концентрации которых одинаковы.

Удельная электрическая проводимость собственного полупро­водника определяется суммой электронной и дырочной :

для полупроводника с собственной проводимостью n=p,

Удельная электрическая проводимость полупроводника n-типа определяется суммой примесной и собственной удельной элек­трической проводимости:

где ; - концентрация свободных электронов, образовавшихся за счет ионизации донорной примеси, т.е. в результате перехода электронов с донорных уровней в зону проводимости.

При комнатной температуре у германия и кремния собствен­ная удельная электрическая проводимость значительно мень­ше примесной удельной электрической проводимости , так как донорная примесь полностью ионизована, а собственная электро­проводность проявляется слабо. При повышении температуры соб­ственная удельная электропроводность увеличивается и в опреде­ленный момент становится больше примесной. Например, для гер­мания с = 0,1 Ом×м собственная электропроводность начинает преобладать над примесной при температуре 90°С, а для случая с = 10-5 Ом×м - при 500°С

Для полупроводника р-типа удельная электрическая проводимость

где , ра - концентрация дырок, образовавшихся за счет ионизации акцепторной примеси, т. е. в результате перехода электронов из валентной зоны на акцепторные уровни.

4) Температурная зависимость удельной проводимости

Удельная электрическая про­водимость полупроводников оп­ределяется концентрацией сво­бодных носителей заряда и их подвижностью. Подвижность носителей заряда определяет­ся их эффективной массой, ско­ростью и частотой столкновений с узлами и дефектами кристаллической решетки и в целом слабо зависит от температуры. Поэтому на характер зависимости электропроводимочсти от температуры основное влияние оказывает концентрация носителей заряда.

Рис. 4.6. Теоретическая зависимость проводимости полупроводников от температуры при различных концентрациях донорных примесей (Nд4>Nд3>Nд2>Nд1)

 

При комнатной температуре концентрация примесных носителей заряда преобладает над соб­ственной. При дальнейшем повышении температуры происходит истощение примеси, т.е. все валентные электроны примеси перехо­дят в зону проводимости и рост проводимости прекращается (рис. 4.6, участок 2-3). Проводимость остается постоянной до тех пор, пока температура не повысится настолько, что тепловой энергии станет достаточно, чтобы собственные электроны могли перейти в зону проводимости, преодолев запретную зону. Благодаря этому переходу концентрация носителей заряда начнет резко воз­растать за счет собственных электронов (участок 3-4). Концентра­ция собственных атомов полупроводника на несколько порядков больше концентрации атомов примесей, поэтому собственная про­водимость при этой температуре значительно больше примесной. Следовательно, собственная проводимость является определяющей. При высоких температурах полупроводники по проводимости приближаются к проводникам.

При большой концентрации примесей зона дополнительных энергетических уровней сливается с зоной проводимости. В этом случае уже при комнатной температуре все валентные электроны примеси находятся в зоне проводимости, являясь носителями заря­дов, и их концентрация не зависит от температуры. Такой полу­проводник называют вырожденным примесным полупроводником. В таком полупроводнике концентрация примесей не влияет на соб­ственную проводимость.

Повышение проводимости полупроводников с ростом температу­ры свидетельствует о том, что полупроводники обладают отрицательным температурным коэффициентом удельного электрического сопро­тивления ТК r. Эту зависимость используют для создания полупровод­никовых первичных преобразователей температуры - термисторов,;

Собственная электрическая проводимость кремния и германия проявляется при сравнительно низких температурах, поэтому тем­пературный диапазон большинства полупроводниковых приборов невелик (до 100... 150 °С).

5) Влияние деформации на электропроводность полупроводников

Электропроводность твердых кристаллических тел изменяется от деформации вследствие увеличения или уменьшения (растяжение, сжатие) междуатомных расстояний, приводящего к изменению концентрации и подвижности носителей. Концентрация носителей заряда может стать меньше или больше вследствие изменения ширины энергетических зон кристалла и смещения примесных уровней, что в свою очередь ведет к изменению энергии активации носителей и изменению их эффективных масс, входящих в выражения концентрации носителей заряда. Подвижность носителей заряда меняется из-за уменьшения (увеличения) амплитуды колебания атомов при их сближении (удалении). Для металлов основным является изменение концентрации носителей заряда, определяе­мое энергией активации. Ширина запрещенной зоны может как увеличиваться, так и уменьшаться при сближении атомов, и у раз­ных полупроводников одна и та же деформация может вызывать, как увеличение, так и уменьшение удельной проводимости.

Величиной, численно характеризующей изменение удельной проводимости (удельного сопротивления) полупроводников при определенном виде деформации, является тензочувствительность

,

которая представляет собой отношение относительного изменения удельного сопротивления полупроводника к относительной дефор­мации в данном направлении.

6 ) воздействие света на электропроводность полупроводников

Световая энергия, поглощаемая полупроводником, вызывает по­явление в нем избыточного (по сравнению с равновесным при данной температуре) количества носителей зарядов, приводящего к воз­растанию электропроводности.

Рис. 4.7. Фотопроводимость германия в зависимо­сти от длины волны

падающего излучения

I— видимая область спектра; II— красная; III -инфракрасная; ДКФ — длинноволновый край фотопро­водимости; ТХ — «тепловой хвост» кривой

 

Фотопроводимостью называют увеличе­ние электрической проводимости веще­ства под действием электромагнитного излучения.

В фотопроводимости обнаруживается квантовая природа света. Энергия фотона

затрачивается в собственном полупро­воднике на образование электронно-дырочных пар за счет переброса электронов из валентной зоны в зону проводимости. Поэтому суще­ствует граничная длина волны, определяемая энергией кванта, до­статочной для перехода электрона с самого верхнего уровня валент­ной зоны на самый нижний уровень зоны проводимости, т. е. равная ширине запрещенной зоны полупроводника. Отсюда по длинно­волновому краю фотопроводимости (ДКФ) можно определить ширину запрещенной зоны полупроводника (рис. 4.7). Для этого, экстра­полировав круто падающий участок кривой до пересечения с осью абсцисс, находят граничную длину волны и энергию квантов, обусловливающую начало фотопроводимости. Так как запрещенная зона различных полупроводниковых веществ имеет ширину от деся­тых долей электрон-вольта до 3 эВ, то фотопроводимость может обнаруживаться в инфракрасной, видимой или ультрафиолетовой части электромагнитного спектра. Из рис. 4.7 видно, что оптическая ширина запрещенной зоны германия 0,7 эВ, пороговая длина волны равна примерно 1,8 мкм, т. е. лежит в инфракрасной области спектра. Фотопроводимость при волнах короче 1,8 мкм определяется пере­ходом электронов с более низких уровней валентной зоны на более высокие уровни зоны проводимости. На кривой рис.4.7 показан «тепловой хвост», тянущийся до 1,9—2 мкм. Наличие «теплового хвоста» (т. е. небольшой фотопроводимости), вызываемое квантами света с энергией, несколько меньшей ширины запрещенной зоны полупроводника, можно объяснить двумя физическими явлениями:

1. Отдельные электроны могут оказаться под суммарным воздей­ствием энергии фотонов и энергии тепловых колебаний кристалли­ческой решетки. Тогда эти электроны перейдут в зону проводимости.

2. Ширина запрещенной зоны не является абсолютно постоянной

«Хвост» кривой на рис. 4.7 имеет тепловую природу.

Частотная зависимость фотопроводимо­сти. Как видно из рис.4.7, в области малых длин волн (левее максимума кривой) наблюдается спад фотопроводимости. Это объяс­няется быстрым увеличением коэффициента поглощения с ростом частоты и уменьшением глубины проникновения падающей на тело электромагнитной энергии. Поглощение происходит в тонком по­верхностном слое, где и образуется основное количество носителей заряда. Появление большого числа избыточных носителей заряда только у поверхности слабо отражается на проводимости всего объема полупроводника.

При длинах волн, превышающих граничную (с учетом теплового «хвоста»), энергии квантов оказываются недостаточными для обра­зования электронно-дырочных пар, и простые полупроводники можно считать прозрачными в этих областях спектра (правее максимума кривой). Однако небольшое оптическое поглощение все же проис­ходит вследствие того, что в полупроводнике имеется некоторое число свободных электронов и дырок.

Влияние температуры на фотопроводи­мость. С понижением температуры уменьшается темновая про­водимость, служащая фоном, на котором появляется фотопроводи­мость, а поэтому роль последней возрастает. Кроме того, с пониже­нием температуры увеличивается и сама фотопроводимость, так как с уменьшением концентрации темновых носителей заряда снижается вероятность рекомбинации носителей. Температура влияет и на граничную длину волны (см. рис. 4.7), причем у одних полупровод­ников она смещается при понижении температуры вправо, а у дру­гих — влево. Это объясняется тем, что с понижением температуры ширина запрещенной зоны у одних полупроводников уменьшается, а у других — увеличивается.

7) влияние сильных электрических полей на электропроводимость полупроводников

Рис. 4.8. Зависимость удельной проводимости полупроводника от напряженности электрического поля при различных температурах (Т12)

 

Электропроводность полупроводников зависит от напряженности электрического поля. Как видно из рис. 4.8, при низких значениях напряженности поля (до некоторого критического значения Ек) соблюдается закон Ома, и удельная проводимость не зависит от на­пряженности поля, а при более высоких напряженностях поля начинается интенсивный рост удельной проводимости по экспонен­циальному закону, приводящий к разрушению структуры полупро­водника. С ростом температуры кривая удельной проводимости перемещается вверх, а наклон возрастающей части становится меньше. Для некоторых полупроводни



Поделиться:


Последнее изменение этой страницы: 2016-04-08; просмотров: 2885; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.16.49.213 (0.02 с.)