ТОП 10:

Статистический и термодинамический методы. Опытные законы идеального газа



Статистический и термодинамический методы исследования. Молекулярная физика и термодинамика — разделы физики, в которых изучаются макроскопические процессы в телах, связанные с огромным числом содержащихся в телах атомов и молекул. Для исследования этих процессов применяют два качественно различных и взаимно допол­няющих друг друга метода: статистический (молекулярно-кинетический) и термодинами­ческий. Первый лежит в основе молекулярной физики, второй — термодинамики.

Молекулярная физика — раздел физики, изучающий строение и свойства вещества исходя из молекулярно-кинетических представлений, основывающихся на том, что все тела состоят из молекул, находящихся в непрерывном хаотическом движении.

Идея об атомном строении вещества высказана древнегреческим философом Демо­критом (460—370 до н. э.). Атомистика возрождается вновь лишь в XVII в. и развива­ется в работах М. В. Ломоносова, взгляды которого на строение вещества и тепловые явления были близки к современным. Строгое развитие молекулярной теории относит­ся к середине XIX в. и связано с работами немецкого физика Р. Клаузиуса (1822—1888), Дж. Максвелла и Л. Больцмана.

Процессы, изучаемые молекулярной физикой, являются результатом совокупного действия огромного числа молекул. Законы поведения огромного числа молекул, являясь статистическими закономерностями, изучаются с помощью статистического метода. Этот метод основан на том, что свойства макроскопической системы в конеч­ном счете определяются свойствами частиц системы, особенностями их движения и усредненными значениями динамических характеристик этих частиц (скорости, энер­гии и т. д.). Например, температура тела определяется скоростью хаотического движе­ния его молекул, но так как в любой момент времени разные молекулы имеют различные скорости, то она может быть выражена только через среднее значение скорости движения молекул. Нельзя говорить о температуре одной молекулы. Таким образом, макроскопические характеристики тел имеют физический смысл лишь в слу­чае большого числа молекул.

Термодинамика — раздел физики, изучающий общие свойства макроскопических систем, находящихся в состоянии термодинамического равновесия, и процессы перехо­да между этими состояниями. Термодинамика не рассматривает микропроцессы, кото­рые лежат в основе этих превращений. Этим термодинамический метод отличается от статистического. Термодинамика базируется на двух началах — фундаментальных за­конах, установленных в результате обобщения опытных данных.

Область применения термодинамики значительно шире, чем молекулярно-кинетической теории, ибо нет таких областей физики и химии, в которых нельзя было бы пользоваться термодинамическим методом. Однако, с другой стороны, термодинами­ческий метод несколько ограничен: термодинамика ничего не говорит о микроскопи­ческом строении вещества, о механизме явлений, а лишь устанавливает связи между макроскопическими свойствами вещества. Молекулярно-кинетическая теория и термо­динамика взаимно дополняют друг друга, образуя единое целое, но отличаясь различ­ными методами исследования.

Термодинамика имеет дело стермодинамической системой — совокупностью мак­роскопических тел, которые взаимодействуют и обмениваются энергией как между собой, так и с другими телами (внешней средой). Основа термодинамического мето­да — определение состояния термодинамической системы. Состояние системы задает­сятермодинамическими параметрами (параметрами состояния) — совокупностью физи­ческих величин, характеризующих свойства термодинамической системы. Обычно в ка­честве параметров состояния выбирают температуру, давление и удельный объем.

Температура — одно из основных понятий, играющих важную роль не только в термодинамике, но и в физике в целом. Температура — физическая величина, харак­теризующая состояние термодинамического равновесия макроскопической системы. В соответствии с решением XI Генеральной конференции по мерам и весам (1960) в настоящее время можно применять только две температурные шкалы — термодина­мическую и Международную практическую, градуированные соответственно в кельвинах (К) и в градусах Цельсия (°С). В Международной практической шкале тем­пература замерзания и кипения воды при давлении 1,013×105 Па соответственно 0 и 100°С (реперные точки).

Термодинамическая температурная шкала определяется по одной реперной точке, в качестве которой взятатройная точка воды (температура, при которой лед, вода и насыщенный пар при давления 609 Па находятся в термодинамическом равновесии). Температура этой точки по термодинамической шкале равна 273,16 К (точно). Градус Цельсия равен кельвину. В термодинамической шкале температура замерзания воды равна 273,15 К (при том же давлении, что и в Международной практической шкале), поэтому, по определению, термодинамическая температура и температура по Между­народной практической шкале связаны соотношением

Т = 273,15 + t.

Температура T = 0 К называетсянулем кельвин. Анализ различных процессов показывает, что 0 К недостижим, хотя приближение к нему сколь угодно близко возможно.

Удельный объем v это объем единицы массы. Когда тело однородно, т. е. его плотность r = const, то v=V/m=1/p. Так как при постоянной массе удельный объем пропорционален общему объему, то макроскопические свойства однородного тела можно характеризовать объемом тела.

Параметры состояния системы могут изменяться. Любое изменение в термодина­мической системе, связанное с изменением хотя бы одного из ее термодинамических параметров, называетсятермодинамическим процессом. Макроскопическая система на­ходится втермодинамическом равновесии, если ее состояние с течением времени не меняется (предполагается, что внешние условия рассматриваемой системы при этом не изменяются).

В молекулярно-кинетической теории пользуются идеализированной модельюидеаль­ного газа, согласно которой считают, что:

1) собственный объем молекул газа пренебрежимо мал по сравнению с объемом сосуда;

2) между молекулами газа отсутствуют силы взаимодействия;

3) столкновения молекул газа между собой и со стенками сосуда абсолютно упругие.

Модель идеального газа можно использовать при изучении реальных газов, так как они в условиях, близких к нормальным (например, кислород и гелий), а также при низких давления» и высоких температурах близки по своим свойствам к идеальному газу. Кроме того, внеся поправки, учитывающие собственный объем молекул газа и действующие молекулярные силы, можно перейти к теории реальных газов.

Рассмотрим законы, описывающие поведение идеальных газов.

Закон Бойля—Мариотта: для данной массы газа при постоянной температуре произведение давления газа на его объем есть величина постоянная:

pV=const при T=const, m=const. (33.1)

Кривая, изображающая зависимость между величинами р и V, характеризующими свойства вещества при постоянной температуре, называетсяизотермой. Изотермы представляют собой гиперболы, расположенные на графикетем выше, чем выше температура, при которой происходит процесс (рис. 60).

Рис. 60

Законы Гей-Люссака:1) объем данной массы газа при постоянном давлении изменяется линейно с температурой:

V = V0(1+ t) при p=const, m=const; (33.2)

2) давление данной массы газа при постоянном объеме изменяется линейно с тем­пературой:

p = p0(1+ t) при V=const, m=const. (33.3)

В этих уравнениях t — температура по шкале Цельсия, р0 и V0 давление и объем при 0°С, коэффициент a = 1/273,15 К–1.

Процесс, протекающий при постоянном давлении, называетсяизобарным. На диа­грамме в координатах V, t (рис. 61) этот процесс изображается прямой, называемой изобарой. Процесс, протекающий при постоянном объеме, называетсяизохорным. На диаграмме в координатах р, t (рис. 62) он изображается прямой, называемойизохорой.

Рис. 62

Рис. 61

 

Из (33.2) и (33.3) следует, что изобары и изохоры пересекают ось температур в точке t=–1/a=–273,15°С, определяемой из условия 1+at = 0. Если перенести начало отсчета в эту точку, то происходит переход к шкале Кельвина (рис. 62), откуда

T = t + 1/a

Вводя в формулы (41.2) и (41.3) термодинамическую температуру, законам Гей-Люссака можно придать более удобный вид:

V = V0(1+ t)= V0[1+a(T-1/a)]= V0aT,

p = p0(1+ t) = p0[1+a(T-1/a)]= p0aT.

V1/V2 = T1/T2 при p = const, m =const; (33.4)

p1/p2 = T1/T2 при V = const, m= const; (33.4)

где индексы 1 и 2 относятся к произвольным состояниям, лежащим на одной изобаре или изохоре.

Закон Авогадро: моли любых газов при одинаковых температуре и давлении занимают одинаковые объемы. При нормальных условиях этот объем равен 22,41×10–3 м3/моль.

По определению, в одном моле различных веществ содержится одно и то же число молекул, называемое постоянной Авогадро:

Закон Дальтона: давление смеси идеальных газов равно сумме парциальных давлений p1,p2 ,..., рn входящих в нее газов:

Парциальное давление — давление, которое производил бы газ, входящий в состав газовой смеси, если бы он один занимал объем, равный объему смеси при той же температуре.

 

§ 34. Уравнение Клапейрона — Менделеева

Как уже указывалось, состояние некоторой массы газа определяется тремя термодина­мическими параметрами: давлением р, объемом V и температурой Т. Между этими параметрами существует определенная связь, называемаяуравнением состояния, кото­рое в общем виде дается выражением

где каждая из переменных является функцией двух других.

Французский физик и инженер Б. Клапейрон (1799—1864) вывел уравнение состоя­ния идеального газа, объединив законы Бойля — Мариотта и Гей-Люссака. Пусть некоторая масса газа занимает объем V1, имеет давление р1 и находится при тем­пературе T1. Эта же масса газа в другом произвольном состоянии характеризуется параметрами р2, V2, T2 (рис. 63). Переход из состояния 1 в состояние 2 осуществляется в виде двух процессов: 1) изотермического (изотерма 1–1'), 2) изохорного (изохора 1'–2).

 

Рис. 63

В соответствии с законами Бойля — Мариотта (41.1) и Гей-Люссака (41.5) за­пишем:

(34.1)

(34.2)

Исключив из уравнений (34.1) и (34.2) получим

Так как состояния 1 и 2 были выбраны произвольно, то для данной массы газа величина pV/T остается постоянной, т. е.

(34.3)

Выражение (34.3) являетсяуравнением Клапейрона, в котором В — газовая постоянная, различная для разных газов.

Русский ученый Д. И. Менделеев (1834—1907) объединил уравнение Клапейрона с законом Авогадро, отнеся уравнение (42.3) к одному молю, использовав молярный объем Vm. Согласно закону Авогадро, при одинаковых р и Т моли всех газов занимают одинаковый молярный объем Vm, поэтому постоянная В будет одинаковой для всех газов. Эта общая для всех газов постоянная обозначается R и называетсямолярном газовой постоянной. Уравнению

(34.4)

удовлетворяет лишь идеальный газ, и оно являетсяуравнением состояния идеального газа, называемым такжеуравнением Клапейрона — Менделеева.

Числовое значение молярной газовой постоянной определим из формулы (34.4), полагая, что моль газа находится при нормальных условиях (р0= 1,013×105 Па, T0=273,15 К, Vm=22,41×10–3 м3/моль): R=8,31 Дж/(моль×К).

От уравнения (42.4) для моля газа можно перейти к уравнению Клапейро­на — Менделеева для произвольной массы газа. Если при некоторых заданных давле­нии и температуре один моль газа занимает молярный объем Vm, то при тех же условиях масса т газа займет объем V= (т/М)Vm, где М —молярная масса (масса одного моля вещества). Единица молярной массы — килограмм на моль (кг/моль). Уравнение Клапейрона — Менделеева для массы т газа

(34.5)

где n =m/Mколичество вещества.

Часто пользуются несколько иной формой уравнения состояния идеального газа, вводя постоянную Больцмана:

Исходя из этого уравнение состояния (42.4) запишем в виде

 

где NA/Vm = n — концентрация молекул (число молекул в единице объема). Таким образом, из уравнения

(34.6)

следует, что давление идеального газа при данной температуре прямо пропорциональ­но концентрации его молекул (или плотности газа). При одинаковых температуре и давлении все газы содержат в единице объема одинаковое число молекул. Число молекул, содержащихся в 1 м3 газа при нормальных условиях, называется числом Лошмидта:

 

 







Последнее изменение этой страницы: 2016-04-25; Нарушение авторского права страницы

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.235.29.190 (0.013 с.)