Шаг 7: проверка циклов на статистическую значимость 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Шаг 7: проверка циклов на статистическую значимость

Поиск

Необходимость статистической проверки. Когда циклы найдены и из данных полностью удален тренд с помощью описанных методов, аналитику нужно оценить циклы, используя различные стандартные ста­тистические приемы. Это очень важно, так как визуально легко найти множество циклов там, где на самом деле их нет. Таким образом, не­обходимо использовать объективную статистическую проверку. В ана­лизе циклов наиболее часто используют три важных теста: тест Бартел-


598 ЧАСТЬ 3. осцилляторы и циклы

са, F-коэффициент и хи-квадрат. Из этих трех способов тест Бартелса предлагает наиболее разумный и надежный способ измерить статисти­ческую значимость цикла.

Общие соображения относительно интерпретации результатов статистической проверки. Следует сделать несколько важных ука­заний относительно интерпретации данных статистических тестов.

1. На все статистические тесты, используемые в анализе ци-клов, будет оказывать влияние присутствие тренда, что бу-дет приво­дить к недооценке статистическими тестами зна-чимости циклов в данных. Вот почему было необходимо полностью снять на­правленность данных на предыдущих этапах.

2. Уровень значимости, показанный этими тестами, будет за-висеть от числа повторений цикла в данных. Таким обра-зом, при ра­венстве всех других условий, циклы меньшей длины, которые по­вторятся в данных большее количество раз, будут, скорее все­го, иметь лучшие статистические ре-зультаты. Вообще говоря, циклы, которые повторяются ме-нее десяти раз в последователь­ности данных (частота мень-ше десяти), не будут, как правило, показывать высокую значимость при статистической проверке. Однако, следуя предложенным ранее советам, вы не будете ис­кать циклы, длина которых соответствует частотам, меньшим десяти.

3. В результате тестов аналитик получает статистические зна-чения, соответствующие вероятностям. Чем больше статис-тическая ве­личина, тем ниже вероятность того, что цикл слу-чаен и тем выше его статистическая значимость. Чтобы из-бежать недоразумений, аналитику следует проверить, вы-дает ли программное обеспе­чение, которым он пользуется при анализе циклов, результаты проверки как статистиче-ские величины, специфичные для дан­ного теста, или как вероятности. В первом случае вероятности следует искать в статистической таблице этого теста. Ранее было принято представлять результаты проверки как статистические
величины из-за сложности вероятностных расчетов. Однако бла­годаря громадному росту производительности процес-соров, се­годня компьютеры могут быстро вычислять веро-ятности напря­мую. Сегодня программное обеспечение для анализа циклов, как правило, вычисляет вероятности, которые проще интерпре­тировать, а не статистические ве-личины.

4. Вообще говоря, циклы с вероятностью больше чем 0,05 (5%) от­вергаются. (Вероятность 0,05 означает, что только в 5 случаях из 100 данный цикл мог бы оказаться случайным.)


ГЛАВА 16. анализ циклов фьючерсных рынков 599

Наилучшие циклы имеют вероятность 0,0001 (вероятность

cлучайности цик­ла равна 1 из 10 000) или менее.

 

5. Предупреждение: низкие вероятности, показанные статистичес­кими тестами, говорят только о том, что возможный цикл, ве­роятно, не случаен; они не гарантируют, что цикл, действитель­но, присутствует. Статистические тесты могут обнаружить «зна­чимый» цикл даже в совершенно случайном ряду чисел. Таким образом, статистические тесты следует рассматривать как на­правляющий принцип, а не как абсолютную истину, которой надо следовать, не задавая вопросов.

Наиболее важный статистический тест, применяемый в цикличес­ком анализе, — тест Бартелса — требует выполнения гармонического анализа. Эта процедура описывается ниже.

Гармонический анализ. Из-за огромного объема необходимых вы­числений гармонический анализ так же, как и спектральный анализ, тре­бует использования компьютеров и программного обеспечения. Гармо­нический анализ вписывает тригонометрические кривые в диаграмму средних значений колонок периодограммы. Например, на рис. 16.13 наложены друг на друга кривая, выведенная с использованием гармо­нического анализа, и диаграмма средних значений колонок, выведен­ная ранее из периодограммы годичных цен на кукурузу. Гармоничес­кий анализ может быть применен только после того, как определена длина возможных циклов. Вот почему было необходимо провести сна­чала спектральный анализ и определить длину этих циклов. Кривая, выведенная с помощью гармонического анализа, чаше всего использу­ется как основание для статистической проверки надежности цикла с помощью теста Бартелса, который является самым важным статистичес­ким тестом в анализе циклов. Вообще говоря, чем точнее совпадают гармоническая кривая и диаграмма средних для колонок периодограм­мы, тем выше статистическая надежность.

Тест Бартелса. Тест Бартелса измеряет, насколько точно совпадают ценовые серии и гармоническая кривая, выведенная для цикла данной тестируемой длины. Тест Бартелса сравнивает кривую цикла с каждым появлением цикла в данных, соотнося амплитуду каждого появления цикла со статистически ожидаемой амплитудой. Тест Бартелса измеря­ет как амплитуду (форму), так и фазу (время) цикла. Математическая мера истинности цикла будет наиболее высокой (т.е. вероятность того, что цикл случаен, оказывается самой низкой), когда есть стабильность и в амплитуде, и во времени. Тест Бартелса был разработан специаль­но для использования с данными, составляющими коррелированные ряды (когда каждое значение данных в точке зависит от значения дан-


600 ЧАСТЬ 3. осцилляторы и циклы

Рисунок 16.13.

ГАРМОНИЧЕСКАЯ КРИВАЯ, СООТВЕТСТВУЮЩАЯ СРЕДНИМ ЗНАЧЕНИЯМ КОЛОНОК ПЕРИОДОГРАММЫ

ных в предыдущих точках). По этой причине тест Бартелса хорошо под­ходит, в частности, для проверки ценовых данных, которые являются коррелированными рядами.

F-коэффициент. В общем случае в статистике F-коэффициент — это отношение двух дисперсий. Дисперсия — это квадрат стандартного отклонения, которое является мерой волатильности данных. Ряды дан­ных, где точки сильно разбросаны, будут иметь высокое стандартное отклонение и дисперсию. И наоборот, ряды данных, где точки распо­ложены близко к своим средним значениям, будут иметь низкое стан­дартное отклонение и дисперсию.

В циклическом анализе F-коэффициент — это отношение диспер­сии средних значений колонок периодограммы к дисперсии средних значений строк периодограммы. Если цикл такой длины в данных не присутствует, средние значения колонок периодограммы не будут де­монстрировать заметного разброса (в колонках не будет заметных пи­ков и впадин), как, например, было в случае средних значений колонок в периодограмме с восемью колонками для ежегодных данных по куку­рузе (рис. 16.9). Таким образом, не следовало бы ожидать, что диспер­сия средних значений колонок будет значительно больше, чем диспер-


ГЛАВА 16. анализ циклов фьючерсных рынков 601

сия средних значений строк. Это означает, что F-коэффициент не ока­зался бы существенно больше единицы. Если, с другой стороны, цикл данной длины присутствует в данных, дисперсия средних значений ко­лонок было бы значительно больше, чем дисперсия средних значений строк (предполагая, конечно, что из данных был удален тренд), и F-ко­эффициент был бы существенно больше единицы. Чем выше F-коэффи-ииент, тем меньше вероятность, что цикл может оказаться случайным. F-коэффициент представляет собой прекрасный индикатор, пока­зывающий, насколько вероятно, что цикл окажется прибыльным с точ­ки зрения торговли. Если тест Бартелса и хи-квадрат (обсуждаемый да­лее) выявляют значимость цикла, но у цикла низкий F-коэффициент, что иногда случается, его польза с точки зрения торговли вызывает подо­зрение. F-коэффициент особенно чувствителен к наличию тренда, по­скольку присутствие тренда в данных будет сильно повышать дисперсию средних для строк периодограммы, таким образом снижая F-коэффи­циент. Следовательно, если с данных не была полностью снята направ­ленность, F-тест может показать низкую значимость цикла, даже когда на самом деле цикл очень надежен. Поэтому очень важно полностью удалить тренд до перехода к этому этапу тестирования цикла.

Хи-квадрат. Тест хи-квадрат измеряет надежность фазы (времени) цик­ла, т.е. проверяет, обнаруживается ли у цикла тенденция достигать ми­нимумов и максимумов вовремя. В тесте хи-квадрат каждая фаза цикла (т.е. строки периодограммы) разбиваются на семь равных отрезков, или ячеек, с теоретическим пиком цикла, соответствующим центральной ячей­ке. Затем отмечается ячейка, в которой в действительности располагает­ся пик, и подсчитывается количество максимумов цикла, появляющихся в каждой ячейке. Если цикл стабилен, то наибольшее количество макси­мумов попадет в центральную ячейку и соседние с ней, при этом количе­ство максимумов будет снижаться при удалении ячеек от центра. Таким образом, будет наблюдаться высокий разброс (дисперсия) количества мак­симумов в ячейках. И напротив, если цикла нет, количество максимумов в ячейках будет распределено равномерно, и дисперсия количества мак­симумов в ячейках будет низкой. Если дисперсия количества максимумов в ячейках велика по сравнению с дисперсией, которую следовало бы ожидать при случайном распределении, хи-квадрат тест показывал бы значимость цикла, т.е. низкую вероятность того, что цикл случаен.

Резюме. Тест хи-квадрат измеряет надежность фазы цикла (его вре­мени); F-коэффициент измеряет надежность амплитуды цикла (его фор­мы); тест Бартелса измеряет надежность как фазы, так и амплитуды. Ре­альные циклы должны показывать свою значимость на всех трех стати­стических тестах, т.е. иметь вероятности случайности, меньшие чем 0,05 на каждом тесте.


602 ЧАСТЬ 3. осцилляторы и циклы

Таблица 16.2.



Поделиться:


Последнее изменение этой страницы: 2016-06-06; просмотров: 217; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.191.67.90 (0.009 с.)