Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Факторы динамики численности популяцийСодержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Известно три типа зависимости численности популяции от ее плотности (рис. 7.10). При первом типе (кривая 1) скорость роста популяции уменьшается по мере увеличения плотности. Это широко распространенное явление позволяет понять, почему популяции некоторых животных относительно устойчивы. Во-первых, при увеличении плотности популяции наблюдается снижение рождаемости. Так, в популяции большой синицы при плотности меньше одной пары на 1 га на одно гнездо приходится 14 птенцов; когда же плотность достигает 18 пар на 1 га, выводок составляет менее 8 птенцов. Во-вторых, при увеличении плотности популяции меняется возраст наступления половой зрелости. Например, африканский слон в зависимости от плотности популяции может достигать половой зрелости в возрасте от 12 до 18 лет. Кроме того, этот вид при низкой плотности дает приплод 1 слоненок за 4 года, тогда как при высокой — рождаемость составляет 1 слоненок за 7 лет. При втором типе зависимости (кривая 2) темп роста популяции максимален при средних, а не при низких
Рис. 7.10. Три типа зависимости роста популяции от плотности. Объяснение в тексте.
значениях плотности. Так, у некоторых видов птиц (например, чаек) число птенцов в выводке увеличивается с повышением плотности популяции, а затем, достигнув наибольшей величины, начинает уменьшаться. Этот тип влияния плотности популяции на скорость размножения особей характерен для видов, у которых отмечен групповой эффект. При третьем типе (кривая 3) темп роста популяции не изменяется до тех пор, пока она не достигнет высокой плотности, затем резко падает. Подобная картина наблюдается, например, у леммингов. При пике численности плотность леммингов становится избыточной, и они начинают мигрировать. Элтон так описал миграции леммингов в Норвегии: животные проходили через деревни в таком количестве, что собаки и кошки, которые вначале нападали на них, просто перестали их замечать. Достигнув моря, обессиленные лемминги тонули. Регуляция численности равновесных популяций определяется преимущественно биотическими факторами. Среди них главным фактором часто оказывается внутривидовая конкуренция. Примером может служить борьба птиц за места для гнездования. Внутривидовая конкуренция может быть причиной физиологического эффекта, известного под названием шоковой болезни. Его отмечают, в частности, у грызунов. Когда плотность популяции становится слишком большой, шоковая болезнь приводит к снижению плодовитости и увеличению смертности, что возвращает плотность популяции к нормальному уровню. У некоторых видов животных взрослые особи питаются собственным приплодом. Это явление, известное как каннибализм, снижает численность популяции. Каннибализм свойствен, например, окуням: в озерах Западной Сибири 80% пищи крупных особей составляет молодь того же вида. Молодь, в свою очередь, питается планктоном. Таким образом, когда нет других видов рыб, взрослые особи живут за счет планктона. Межвидовые взаимодействия также играют существенную роль в контроле плотности популяции. Взаимодействия паразит-хозяин и хищник-жертва часто за- висят от плотности. Болезни также являются фактором, принимающим участие в регуляции плотности популяции. Когда кролики болеют миксоматозом, вызываемым вирусом, распространение инфекции идет гораздо быстрее в популяциях с повышенной плотностью. Хищничество как ограничивающий фактор само по себе имеет большое значение. Причем если влияние жертвы на численность популяции хищника не вызывает сомнений, то обратное воздействие, т. е. на популяцию жертвы, бывает не всегда. Во-первых, хищник уничтожает больных животных, тем самым он улучшает средний качественный состав популяции жертвы. Во-вторых, роль хищника ощутима только тогда, когда оба вида обладают приблизительно одинаковым биотическим потенциалом. В противном случае из-за низкого темпа размножения хищник не в состоянии ограничить численность своей жертвы. Например, только одни насекомоядные птицы не могут остановить массовое размножение насекомых. Иными словами, если биотический потенциал хищника намного ниже биотического потенциала жертвы, действие хищника приобретает постоянный характер, не зависящий от плотности его популяции. Численность насекомых-фитофагов нередко определяется комбинацией видоспецифичных реакций насекомых и растений на воздействие загрязняющих веществ. Загрязнение понижает резистентность растений, в результате чего численность насекомых возрастает. Однако при слишком большом загрязнении численность насекомых падает, несмотря на уменьшение сопротивляемости растений. Приведенная дифференциация факторов динамики численности популяций позволяет понять их реальное значение в жизни и воспроизводстве популяций. Современная концепция автоматического регулирования численности популяций базируется на сочетании двух принципиально различных явлений: модификаций, или случайных колебаний численности, и регуляций, действующих по принципу кибернетической обратной связи и нивелирующих колебания. В соответствии с этим выделяют модифицирующие (не зависящие от плотности популяции) и регулирующие (зависящие от плотности по- пуляции) экологические факторы, причем первые из них воздействуют на организмы либо непосредственно, либо через изменения других компонентов биоценоза. По существу, модифицирующие факторы представляют собой различные абиотические факторы. Регулирующие факторы связаны с существованием и активностью живых организмов (биотические факторы), поскольку лишь живые существа способны реагировать на плотность своей популяции и популяций других видов по принципу отрицательной обратной связи (рис. 7.11). Рис. 7.11. Факторы динамики численности популяции с позиций концепции автоматического регулирования (по Викторову, 1976). Если воздействия модифицирующих факторов приводят лишь к преобразованиям (модификациям) колебаний численности, не устраняя их, то регулирующие факторы, выравнивая случайные отклонения, стабилизируют (регулируют) численность на определенном уровне. Однако на разных уровнях численности популяции регулирующие факторы принципиально различны (рис. 7.12). Например, хищники-полифаги, способные при изменении численности жертв ослабить или усилить свою активность — функциональная реакция— оказывают дей- ствие при сравнительно низких значениях численности популяции жертвы. Хищники-олигофаги, характеризующиеся в отличие от полифагов численной реакцией на состояние популяции жертвы, оказывают на нее регулирующее действие в более широком диапазоне, чем полифаги. При достижении популяцией жертвы еще более высокой численности создаются условия для распространения болезней и, наконец, предельный фактор регуляции —внутривидовая конкуренция, ведущая к исчерпыванию доступных ресурсов и развитию стрессовых реакций в популяции жертвы. На рис. 7.12 представлена многозвенная буферная система регулирования численности популяции под воздействием биотических факторов, степень влияния которых зависит от плотности популяции. В реальной ситуации данный параметр зависит от большого числа факторов, в частности и тех, которые не оказывают регулирующего воздействия на плотность популяции по принципу обратной связи. Взаимодействие между модифицирующими, регулирующими, а также такими специфическими факторами, как размеры тела, группы и индивидуального уча- Рис. 7.12. Включение разных регулирующих механизмов на разных уровнях численности популяции (по Викторову, 1976). стка, при их влиянии на плотность популяции млекопитающих показано на рис. 7.13. Рис. 7.13. Влияние размеров тела, факторов среды и поведения на плотность гипотетической популяции млекопитающих (по Эйзенбергу, 1983). Таким образом, чтобы получить исчерпывающую информацию о том, какие факторы вызывают колебания численности, теоретически требуются данные о физико-химических условиях, обеспеченности ресурсами, жизненном цикле этих организмов и влиянии конкурентов, хищников, паразитов и т. д., причем нужно знать, как все эти факторы влияют на рождаемость, смертность и миграцию. Все популяции непрерывно изменяются: новые организмы рождаются или прибывают как иммигранты, а прежние гибнут или эмигрируют. Несмотря на это, флуктуации размера популяции не безграничны. С одной стороны, она не может расти беспредельно, а с другой — вымирают виды достаточно редко. Следовательно, один из основных признаков популяционной динамики — сочетание изменений с относительной стабильностью. При этом колебания размеров популяций сильно различаются у разных видов.
Т е м а 8 ЭКОЛОГИЧЕСКАЯ СИСТЕМА На любом участке земной поверхности обитает всегда комплекс видов. В изоляции вид быстро ухудшает условия своего существования, поскольку увеличение биомассы происходит до тех пор, пока пищевые ресурсы не исчерпаны. После этого начнется отмирание биомассы. Если же дать дополнительные пищевые ресурсы, то и в таком случае падения биомассы избежать не удастся, так как будут накапливаться продукты обмена. КОНЦЕПЦИЯ ЭКОСИСТЕМЫ Первые организмы на Земле были гетеротрофами. Они быстро исчерпали бы себя, если бы не появились автотрофы. При наличии этих групп организмов уже возможен примитивный круговорот веществ: Автотрофы синтезируют органические вещества, а гетеротрофы их потребляют. При этом происходит расщепление органических веществ. Если продукты расщепления вновь используются автотрофами, возникает круговорот между организмами, населяющими экосистему. Биотическую и абиотическую части экосистемы связывает непрерывный обмен материалом — круговороты питательных веществ, энергию для которых поставляет Солнце (рис. 8.1). Растения синтезируют органические соединения, используя энергию солнечного света и питательные вещества из почвы и воды. Эти соединения служат растениям строительным материалом, из которого они образуют свои ткани, и источником энергии, необходимой им для поддержания своих функций. Для высвобождения запасенной ими химической энергии гетеротрофы разлагают органические соединения на исходные неор-
Рис 8.1. Поток энергии и круговорот химических веществ в экосистеме (по Риклефсу, 1979). ганические компоненты - диоксид углерода, воду, нитраты, фосфаты и т. п., завершая тем самым круговорот питательных веществ. Сказанное выше позволяет нам определить экосистему так: экологическая система представляет собой любое непрерывно меняющееся единство, включающее все организмы на данном участке и взаимодействующее с физической средой таким образом, что поток энергии создает определенную трофическую структуру, видовое разнообразие и круговорот веществ внутри системы. Другая формулировка звучит следующим образом: экосистема - исторически сложившаяся система совместного использования совокупностью живых организмов определенного пространства обитания в целях питания, роста и размножения. Экосистема есть основная функциональная единица живой природы, включающая и организмы, и абиотическую среду, причем каждая из частей влияет на другую и обе необходимы для поддержания жизни в том виде, в каком она существует на Земле. Двуединый характер этого комплекса подчеркнул В.Н. Сукачев в учении о биогеоценозе. Идеи, развиваемые Сукачевым, нашли графическое выражение на рис. 8.2.
Рис. 8.2. Структура-биогеоценоза по Сукачеву (1964). Принимая двуединый характер биогеоценоза (экотоп + биоценоз), следует подчеркнуть, что неправомерно рассматривать биоценоз как сумму фитоценоза, зооценоза и микробоценоза, реально не существующих в природе в качестве отдельных и самостоятельных групп растений, животных и микроорганизмов. В современной экологической литературе экотоп часто обозначают как косную часть экосистемы, а биоценоз - как ее живую часть (рис. 8.3). Рис. 8.З. Основные экологические компоненты биогеоценоза (из Реймерса, 1988). В первом приближении биотическая часть экосистемы обязательно включает два основных компонента: 1) автотрофный компонент, для которого характерны фиксация световой энергии, использование простых неорганических веществ, построение сложных веществ; 2) гетеротрофный компонент, которому присущи утилизация, перестройка и разложение сложных органических веществ. Очень часто организмы, представляющие собой эти два компонента, разделены в пространстве; они располагаются в виде ярусов, один над другим. Автотрофный метаболизм наиболее интенсивно происходит в верхнем ярусе — «зеленом поясе», т. е. там, где наиболее доступна световая энергия, а гетеротрофный метаболизм преобладает внизу, в почвах и отложениях — «коричневом поясе», в котором накапливается органическое вещество. Функционирование автотрофов и гетеротрофов разделено также во времени: использование продукции ав-тотрофных организмов гетеротрофными может происходить не сразу, а с существенной задержкой. Например, в лесной экосистеме фотосинтез превалирует в листовом пологе. Лишь часть продуктов, причем весьма небольшая, немедленно и непосредственно перерабатывается гетеротрофами, питающимися листвой и молодой древесиной. Основная масса синтезированного вещества (в форме листьев, древесины и запасных питательных веществ в семенах, корнях) в конце концов, попадает в подстилку и почву, где и происходит утилизация органического вещества. С точки зрения их роли в экосистемах переходную группу между автотрофами и гетеротрофами образуют хемосин-тезирующие бактерии. Они получают энергию, необходимую для включения углекислого газа в состав компонентов клетки, не путем фотосинтеза, а в результате химического окисления таких простых неорганических соединений, как аммоний (окисляется в нитрит), нитрит (в нитрат), сульфид (в серу), закись железа (в оксид железа). Часть бактерий может развиваться в темноте, но большинство нуждается в кислороде. Во втором приближении во всякой экосистеме можно выделить следующие компоненты: 1) неорганические вещества (углерод, азот, углекислый газ, вода и т. д.), вступающие в круговороты; 2) органические соединения (белки, углеводы, липиды, гуминовые вещества и т. д.), связывающие биотическую и абиотическую части; 3) климатический режим (температура и другие физические факторы); 4) продуценты — автотрофные организмы, главным образом зеленые растения, которые способны создавать пищу из простых неорганических веществ; 5) консументы — гетеротрофные организмы, главным образом животные, которые поедают другие организмы или частицы органического вещества; 6) редуценты (деструкторы, декомпозиторы) — гетеротрофные организмы, преимущественно бактерии и грибы, которые расщепляют сложные соединения до простых, пригодных для использования продуцентами. Первые три группы - неживые компоненты, а остальные составляют живой вес (биомассу). Расположение трех последних компонентов относительно потока поступающей энергии представляет собой структуру экосистемы (рис 8.4). Продуценты улавливают солнечную энергию и переводят ее в энергию химических связей. Консументы, поедая продуцентов, разрывают эти связи. Высвобожденная энергия используется консументами для построения собственного тела. Наконец, редуценты рвут химические связи разлагающегося органического вещества и строят свое тело. В результате вся энергия, запасенная продуцентами, оказывается использованной. Органические вещества разлагаются на неорганические и возвращаются к продуцентам. Таким образом, структуру экосистемы образуют три уровня (продуценты, консументы, редуценты) трансформации энергии и два круговорота — твердых и газообразных веществ. В структуре и функции экосистемы воплощены все виды активности организмов, входящих в данное биотическое сообщество: взаимодействия с физической средой и друг с другом. Однако организмы живут для самих себя, а не для того, чтобы играть какую-либо роль в эко- системе. Свойства экосистемы слагаются благодаря деятельности входящих в нее растений и животных. Лишь учитывая это, мы можем понять ее структуру и функции, а также то, что экосистема как единое целое реагирует на изменения факторов среды. Проиллюстрируем данное положение на примере изменений, происходящих в сосновых лесах под действием сернистого ангидрида.
Рис. 8.4. Структура экосистемы, включающая один поток энергии (контурная стрелка) и два круговорота веществ: твердых (толстая стрелка) и газообразных (тонкая стрелка). Тонкой прерывистой стрелкой показано участие в круговороте анаэробных бактерий. Под действием сернистого газа в хвое сосен происходят значительные физиологические и морфометрические изменения. Наблюдается пожелтение концов хвоинок, а затем и их некроз, что в конечном итоге приводит к зна- чительному уменьшению охвоенности, суховершинности и разреженности крон деревьев. Под влиянием кислых осадков отмечается обеднение травянисто-кустарникового яруса, появление множества мертвопокровных участков, что вызывает общее повышение температуры воздуха под пологом леса, в первую очередь в напочвенном ярусе. Длительная загазованность воздуха вызывает хроническое расстройство сосновых древостоев, замедляет их рост и ослабляет устойчивость не только к абиотическим факторам среды, но и к хвоегрызущим вредителям. Увеличению плотности хвоегрызущих чешуекрылых в зоне загрязнения способствуют ослабление физиолого-биохи-мических защитных механизмов растений под воздействием выбросов, содержащих сернистый газ, снижение биотического пресса на популяции вредителей со стороны паразитических насекомых, хищников и болезней. В целом сернистый газ отрицательно влияет на развитие хвоегрызущих чешуекрылых. Уменьшается масса гусеницы и куколки, ухудшаются репродуктивные показатели самок и жизнеспособность отложенных ими яиц. Однако плотность популяции этих насекомых увеличивается. Во-первых, снижается смертность куколок, так как в результате повышения температуры под пологом леса гусеницы успевают закончить развитие до того, как под воздействием заморозков осенью уйти в подстилку. Во-вторых, более чувствительные к загрязнению хищники и паразиты снижают свое давление на хвоегрызущих чешуекрылых. Кроме того, уменьшение охвоенности сопровождается еще большей концентрацией мелких, и без того многочисленных гусениц на хвое, что в итоге приводит к быстрой гибели сосновых лесов. ГОМЕОСТАЗ ЭКОСИСТЕМЫ Сложившаяся исторически экосистема не должна рассматриваться просто как сумма слагаемых, т. е. сочетание отдельных входящих в ее состав организмов. Это система, сохраняющая устойчивость при относительной стабильности внешней среды, способна к разнообраз- ным изменениям в результате перемен во внешней среде и в составе самой экосистемы. Способность экосистемы к самоподдержанию и саморегулированию называется гомеостазом. В основе го-меостаза лежит принцип обратной связи, который можно продемонстрировать на примере зависимости плотности популяции от пищевых ресурсов. Обратная связь возникает, если «продукт» оказывает влияние на «датчик» (рис. 8.5). В результате отклонения плотности популяции от оптимума в ту или иную сторону увеличивается рождаемость или смертность, результатом чего будет приведение плотности к оптимуму. Такая обратная связь, т. е. связь, уменьшающая отклонение от нормы, называется отрицательной обратной связью. Положительная же обратная связь увеличивает это отклонение. Наибольшее значение для поддержания гомеостаза экосистемы имеет отрицательная обратная связь. Благодаря именно этой связи регулируются процессы запасания и высвобождения питательных веществ, продуцирования и разложения органических соединений. Иными словами, взаимодействие круговоротов веществ и потоков энергии в экосистеме создает самокорректирующийся гоме-
Рис. 8.5. Упрощенная система регуляции плотности популяции (по: Одум, 1975). остаз, т. е. для его поддержания не требуется внешнего управления. Поддержание гомеостаза экосистемы возможно лишь в определенных пределах. Вне сферы действия отрицательной обратной связи вступает в силу положительная обратная связь. Область действия отрицательной обратной связи можно изобразить в виде гомеостатического плато (рис. 8.6). Оно состоит из ступенек; в пределах каждой ступеньки действует отрицательная обратная связь. Переход со ступеньки на ступеньку может произойти в результате изменения в «датчике». Так, увеличение или уменьшение количества пищевых ресурсов переводит гомеостаз на другой уровень.
Рис. 8.6. Томеостатическое плато (по: Одум, 1975). В практике сельского хозяйства повышение урожайности часто связывают с количеством вносимых удобрений. Однако, как правило, удобрений вносится столько, что система гомеостаза выходит за верхний предел действия отрицательной обратной связи, вследствие чего в агроценозе начинаются необратимые изменения, приводящие к деградации возделываемых площадей. Так, увлечение удобрениями привело к эрозии и засолению хлопковых полей в Средней Азии. B гомеостаз вовлекаются не только организмы и их продукты, но и неорганическая природа. Мы знаем, что абиотические факторы контролируют жизнедеятельность организмов. В свою очередь, организмы различными способами влияют на абиотическую среду. Жизнедеятельность организмов постоянно приводит к физическим и химическим изменениям инертных веществ, поставляя в среду новые вещества и источники энергии. Скорость изменения химического состава окружающей среды в результате жизнедеятельности организмов, синтезирующих и разлагающих органические вещества, на четыре порядка выше, чем скорость его изменения под влиянием геологических процессов. Вещества, запасаемые растениями и животными, усиливают то стабилизирующее воздействие, которое обеспечивается скоплениями детрита и неорганических веществ при разного рода пертурбациях в системе. Даже после пожаров, казалось бы совершенно уничтожающих все живое, в местообитании остаются огнеустойчивые семена и корни, приспособленные к тому, чтобы сохранить себя, а тем самым и систему как целое.
Тема9 ЭНЕРГЕТИКА ЭКОСИСТЕМЫ Энергия — общая количественная мера движения и взаимодействия всех видов материи, благодаря чему все явления природы связаны воедино. Изменение энергии в системе происходит при совершении работы. Первый закон термодинамики — закон сохранения энергии — гласит, что энергия в природе не возникает из ничего и не исчезает, она только переходит из одной формы в другую. Количество энергии при этом остается постоянным. Этому закону подчиняются все известные процессы в природе. Второй закон термодинамики формулируется так: поскольку некоторая часть энергии всегда рассеивается в виде недоступной для использования тепловой энергии, эффективность самопроизвольного превращения кинетической энергии (например, энергии солнечного излучения) в потенциальную (энергию химических связей синтезируемых органических веществ) всегда меньше 100%. ПОТОК ЭНЕРГИИ В ЭКОСИСТЕМЕ Важнейшая термодинамическая характеристика экосистемы—ее способность создавать и поддерживать высокую степень внутренней упорядоченности, т. е. состояние с низкой энтропией[2]. Система обладает низкой энтропией, если в ней происходит непрерывное рассеяние легко используемой энергии (например, энергии света или пищи) и превращение ее в энергию, используемую с трудом (например, в тепловую). Упорядоченность экосистемы, т. е. сложная структура биомассы, поддерживается в результате дыхания всего сообщества, при котором неупорядоченность как бы откачивается из
сообщества. Дыхание сообщества можно представить как процесс, обратный фотосинтезу: (CH20) + 02=C02+H20 + Q. Отношение энергии, затрачиваемой в экосистеме на дыхание, т. е. на поддержание ее жизнедеятельности (R), к энергии, заключенной в структуре биомассы (В), обозначают как меру термодинамической упорядоченности (R/В). Существование экосистемы возможно лишь при притоке из окружающей среды не только энергии, но и вещества, т. е. реальные экосистемы — энергетически и структурно открытые системы. Все экосистемы связаны воедино благодаря взаимодействию их компонентов, находящихся по отношению друг к другу и неживой среде в подвижном равновесии. Второй закон термодинамики связан с принципом стабильности. Согласно этой концепции, любая естественная система с проходящим через нее потоком энергии (например, Земля или озеро) склонна развиваться в сторону устойчивого состояния, и в ней вырабатываются саморегулирующие механизмы. В случае кратковременного воздействия на систему извне эти механизмы обеспечивают ее возврат к устойчивому состоянию. Когда оно достигнуто, перенос энергии обычно идет в одном направлении и с постоянной скоростью, что соответствует принципу стабильности. Общий поток энергии, характеризующий экосистему, состоит из солнечного излучения и длинноволнового теплового излучения, получаемого от близлежащих тел. Оба вида излучения определяют климатические условия среды (температуру, скорость испарения воды, движения воздуха и т. д.), но в фотосинтезе, обеспечивающем энергией живые компоненты экосистемы, используется лишь малая часть энергии солнечного излучения. За счет этой энергии создается основная, или первичная, продукция экосистемы. Следовательно, первичная продуктивность экосистемы определяется как скорость, с ко- торой лучистая энергия используется продуцентами в процессе фотосинтеза, накапливаясь в форме химических связей органических веществ. Первичную продуктивность Р выражают в единицах массы, энергии или эквивалентных единицах в единицу времени. Ключевое слово в понятии продуктивности — скорость. Термин «продуктивность»[3] и выражение «скорость продуцирования» вполне взаимозаменяемы. Даже когда термин «продукция» используется для обозначения количества накопленного органического вещества, в нем всегда учитывается и время. Первичную продуктивность экосистемы обычно нельзя определить простым подсчетом и взвешиванием имеющихся организмов, хотя по данным о продукции в моменты времени t1, t2 и т. д. можно получить верные оценки первичной продуктивности. Когда известно количество продукции, образовавшейся в отдельные моменты времени, интегральная продукция за некоторый отрезок времени может быть определена с помощью простейших методов численного интегрирования, среди которых наиболее распространен метод трапеций. Значения продукции Р’t в отдельные периоды наблюдений t наносятся на график и соединяются ломаной линией (рис. 9.1). Затем вычисляется площадь фигуры, ограниченной осью абсцисс и этой ломаной линией, как сумма площадей отдельных трапеций: P(t1,tn) = 1/2[P'(t1)+P'(t2 ) ](t2- t1)+...+1/2[P'(tn-1) + P'(tn)](tn-tn-1). Полученное значение и есть количество органического вещества, образованного автотрофами за период времени t1,- tn, или первичная продукция данной экосистемы за то же время. В процессе производства органического вещества следует выделить четыре последовательных уровня или ступени.
Рис. 9.1. Изменение продукции Р't во времени t (по: Алимов, 1989). Валовая первичная продуктивность — это скорость накопления в процессе фотосинтеза органического вещества, включая ту его часть, которая за время измерений будет израсходована на дыхание. Ее обозначают PG и выражают в единицах массы или энергии, приходящихся на единицу площади или объема в единицу времени. Чистая первичная продуктивность — скорость накопления органического вещества в растительных тканях за вычетом той его части, которая использовалась на дыхание (R) растений в течение изучаемого периода: PN = PG-R. Вторичная продуктивность — скорость накопления органического вещества на уровне консументов. Она обозначается через Р2 , Р3 и т. д. в зависимости от трофического уровня. Чистая продуктивность сообщества — скорость накопления органического вещества, не потребленного гетеротрофами, т.е. чистая первичная продукция за вычетом той ее части, которая в течение изучаемого периода (обычно за вегетационный период или за год) была потреблена гетеротрофами: PN — (P2 + Р3 + Р4+ …). На каждый момент времени чистая продукция сообщества выражается наличной биомассой. Иначе ее называют урожаем на корню. Урожай на корню постоянно меняется: весной он ничтожен, а осенью достигает максимума. Следует отличать урожай на корню, т. е. на дан- ный момент времени, от урожая за годовой цикл. Наличную биомассу, или урожай на корню, нельзя путать с продуктивностью. Так, на богатом пастбище, выедаемом скотом, урожай травы на корню, очевидно, будет гораздо меньше, чем на менее продуктивном пастбище, на которое в период измерения не выгоняли скот. Следует также различать продукцию текущую и общую. Если сосновый лес на площади 1 га в некоторых конкретных условиях способен за время своего существования произвести 200 м2 древесной массы, то это будет общая продукция. Однако за один год такой лес создает всего 1,7-2,5 м2 древесины. Эта величина и есть текущая продукция, или годичный прирост, а также урожай за годовой цикл. В содержании понятия «продуктивность» наглядно отражается отличие механизма движения потока энергии, пронизывающего всю экосистему, от той его части, которая проходит только через живые компоненты. Экосистема получает поток солнечной энергии hv (рис. 9.2). Часть энергии в форме дыхания (R) организмы затрачи- Рис. 9.2. Экосистема с разделением потока энергии на W и R. А — абиотическая совокупность; В — биотическая совокупность, включающая три уровня организации; кольцо — круговорот веществ. вают на поддержание сложной структуры биомассы. Между энергией, идущей на дыхание, и тепловым излучением от близлежащих тел (W) существует обратно пропорциональная зависимость: чем больше W, тем меньше R. Так, высокие скорости продуцирования встречаются там, где физические факторы благоприятны, особенно при дополнительном поступлении в экосистему энергии извне. Поступления энергии со стороны абиотических компонентов уменьшают затраты живых организмов на поддержание собственной жизнедеятельности, т.е. они компенсируют свои потери тепла на дыхание (при «откачивании» неупорядоченности). Например, энергия приливов повышает продуктивность природной прибрежной экосистемы, замещая часть энергии, использованной на дыхание, которая иначе должна была бы расходоваться на перенос минеральных веществ, а также на транспорт пищи и отходов. Следовательно, оценивая продуктивность экосистемы, необходимо учитывать как утечки энергии, связанные со сбором урожая, загрязнением среды, неблагоприятными климатическими условиями и другими типами стрессовых воздействий, так и поступления энергии, которые увеличивают продуктивность, компенсируя потери энергии при дыхании. Урожай в общепринятом смысле, т. е. чистую первичную продукцию, не потребленную гетеротрофами за вегетационный пеориод, представим в следующем виде: тьих, человек может способствовать уменьшению вторичной продукции. Экологически данный путь наиболее дорогостоящ, так как борьба с насекомыми, вредящими сельскому хозяйству, связана не только с загрязнением среды пестицидами, но и с уменьшением видового разнообразия и, следовательно, нарушением устойчивости агроценозов. Рассмотрим баланс между валовой первичной продукцией и дыханием сообщества. Допустим, что вся чистая первичная продукция потребляется консументами первого порядка. Сохраняя аналогичные допущения для последующих трофических уровней, запишем систему уравнений (символ «пр» означает продуцент, «к» —консумент; римские цифры — порядок консументов):
Суммирование равенств показывает, что вся валовая первичная продукция полностью расходуется на автотрофное и гетеротрофное дыхание так, что в конце годового цикла ничего не остается. Подобное равновесие между продуцированием и потреблением наблюдается в наиболее стабильных сообществах, где все произведенное за год органическое вещество утилизируется значительным числом разнообразных консументов. В балансе между валовой первичной продукцией и дыханием сообщества заключен смысл противоречия между хозяйственными устремлениями человека и стратегией развития природы. Человек заинтересован в повышении годового выхода чистой продукции сообщества, а стратегия развития любой экосистемы направлена на то, чтобы не только произвести за годовой цикл как можно больше, но за это же время и потребить все произведенное. Однако равенство между приходом и расходом —явление достаточно редкое; оно наблюдается в наи- более стабильных сообществах, в частности в тропической зоне, причем создает объективные трудности для развития там сельского хозяйства. Человек, выжигая пышный тропический лес, надеется получить на освободившейся территории высокие урожаи. Однако вскоре оказывается, что почвы на обнаженной территории абсолютно бесплодны — вся годовая продукция росшего на этом месте леса потреблялась различными консументами и в почвах ничего не откладывалось. В большинстве случаев имеет место превалирование валовой первичной продукции над дыханием сообщества, в результате чего происходит накопление непотребленного органического вещества, например,
|
||||
Последнее изменение этой страницы: 2016-04-26; просмотров: 1347; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.117.254.177 (0.016 с.) |