Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Экологические факторы среды. закон толерантности Шелфорда.↑ Стр 1 из 19Следующая ⇒ Содержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Экологические факторы среды. закон толерантности Шелфорда. Среда обитания – это та часть природы (или совокупности конкретных природных условий), которая окружает живые организмы и оказывает на них прямое или косвенное влияние и вызывает у них приспособительные реакции (адаптации). На Земле организмы освоили четыре важнейшие среды обитания – водную, наземную (включая и воздушную), почвенную и тела других организмов (паразитические формы). В последние десятилетия человек начал освоение космического пространства. От понятия среды обитания следует отличать понятие «условия существования», или совокупность жизненно необходимых факторов среды, без которых организмы не могут существовать. Факторы - это движущие силы совершающихся процессов или условия, влияющие на эти процессы. Факторы среды, которые вызывают у отдельных особей, популяций или сообществ приспособительные реакции (или адаптации), называются экологическими факторами. Экологические факторы подразделяются на три основные группы: 1. Абиотические факторы, или факторы неорганической или неживой природы. К ним относятся: Физические факторы – тяготение, спектр электромагнитного излучения, газовый состав атмосферы, освещенность и мн. др. Климатические факторы – температура, влажность, cкорость ветра, состав и давление атмосферы и т.д.; Эдафические факторы (от греч. эдафон – почва) – структура почвы, содержание в ней минеральных солей и микроэлементов, определяющих ее плодородие, соленость, рН и пр. Гидрологические факторы (от греч. гидро – вода) - прозрачность, скорость течения, концентрация в газов и растворенных веществ, электропроводность, соленость, рН и мн. др. 2. Биотические факторы, или разнообразные формы влияния жизнедеятельности одних организмов на другие. Их многочисленные формы с достаточной долей условности можно разделить на ряд групп: Нейтрализм; Конкуренция; Аменсализм; Паразитизм; Хищничество; Комменсализм; Протокооперация; Мутуализм. 3. Антропогенные факторы, которые вызваны человеческой деятельностью. Они могут быть подразделены на три основные группы: А. Изменение природных ландшафтов; Б. Загрязнение окружающей среды; В. Уменьшение численности отдельных видов. Изменения природных ландшафтов могут быть выражены в разной степени – от незначительных, например, когда луг эпизодически используется для выпаса домашнего скота, до кардинальных - когда на месте осушенного болота создается пашня, или на месте вырубленного лесного массива – населенный пункт. Крайний случай результат этого процесса – т.наз. бедленд (от англ. badland – «плохая земля») – территория, полностью лишенная естественного растительного покрова. Примеры бедленда - открытые разработки полезных ископаемых, терриконы пустой породы, открытые свалки промышленных и бытовых отходов. Загрязнение окружающей среды означает вызванное деятельностью человека привнесение в окружающую среду новых, обычно нехарактерных для нее агентов, выводящее экологическую систему из состояния равновесия или стабильного состояния. основные группы загрязнений: А. Физическое загрязнение, связанное с изменением физических параметров среды (температурное (тепловое), световое, шумовое, электромагнитное, радиационное и т.п. загрязнение). Б. Химическое загрязнение, или изменение в рассматриваемый период времени среднемноголетних концентраций химических элементов или их соединений в среде (отходы производства, минеральные удобрения, пестициды, радионуклиды и т.д). В. Биологическое загрязнение, или привнесение в среду и размножение в ней нежелательных для человека организмов, а также увеличение концентрации в среде продуктов их жизнедеятельности. Чаще всего оно вызывает негативный эффект. Однако если среда загрязняется органическими веществами, это может оказать положительное воздействие на те виды живых организмов, которые способны употреблять их в пищу или для других целей. Например, нефтяное загрязнение при авариях танкеров оказывает огромное отрицательное воздействие на водные и прибрежные экосистемы. Однако в нефтяном пятне начинает быстро увеличиваться численность целого ряда видов бактерий, которые способы усваивать нефть, разлагая ее в процессе метаболизма до простых неорганических соединений. Закон толерантности Влияние экологических факторов на организмы многообразно. Одни из них оказывают более сильное влияние, другие – более слабое. Однако в характере воздействия многих факторов на можно выявить некоторые общие закономерности. Впервые закономерности воздействия факторов среды на организмы начал изучать немецкий химик и агроном Юстус Либих в 1840 году на примере влияния содержания минеральных солей в почве на рост и урожайность культурных растений. Либих установил, что урожайность растений зависит не от тех элементов их питания, которые имеются в избытке, например, углекислого газа и воды, а от тех, которые требуются растению в ограниченном количестве. В их числе оказываются, например, соединения азота, фосфора, калия, серы, которые необходимы растению для нормального роста, но которых в почве, как правило, очень мало. В 1840 г. Либих четко сформулировал положение, что устойчивость организма к внешним факторам определяется самым слабым звеном в совокупности его экологических потребностей. Чем выше содержание химического элемента в почве, тем выше урожайность растений. Если какого-либо элемента в почве недостает, то увеличение содержания других элементов не приведет к повышению урожайности («бочка Либиха»). Фактор, вызывающий подобное воздействие на живой организм, называется лимитирующим, или ограничивающим фактором. Лимитирующее воздействие может оказывать не только недостаток какого-либо фактора, как полагал Либих, но и его избыток. Представления об отрицательном влиянии «переизбытка» фактора на живые организмы впервые четко сформулировал В. Шелфорд в 1913 году. Затем эти представления стали известны как «закон толерантности Шелфорда» ( от англ. «tolerance» - выносливость) - Диапазон действия фактора на организм ограничен некоторыми пороговыми значениями (точки минимума и максимума), в пределах которых (зона толерантности) возможно его существование. Виды, у которых интервал зоны толерантности достаточно широкий, называются эврибионтными, а у которых этот интервал узкий - стенобионтными. По отношению отдельным факторам такие виды будут называться соответственно: температура (эвритермные и стенотермные); соленость (эвригалинные и стеногалинные); свет (эврифотные и стенофотные), активная реация среды (рН) (эвриионные и стеноионные). Существует также определенная градация в группах стенобионтных видов. Например, стенотермные виды, способные существовать только при пониженных температурах, называются холодолюбивыми, или криофильными видами. Их примерами являются многие обитатели Арктики и Антарктики. Стенотермные виды, которые способны обитать только при повышенных температурах, называются теплолюбивыми, или термофильными видами. Такие виды населяют тропические регионы. Виды, у которых зона толерантности к какому либо фактору особенно узка, могут рассматриваться как виды-индикаторы (или экологические индикаторы) состояния окружающей среды. По наличию вида-индикатора в определенном биотопе можно предполагать, что значение соответствующего фактора среды здесь не выходит за пределы зоны толерантности для этого вида. Например, личинки веснянок способны выживать только в холодных и чистых, богатых кислородом водоемах. Поэтому они являются видами-индикаторами чистых вод. Из закона толерантности Шелфорда следует ряд важных выводов: 1. Любой фактор среды, приближающийся к пределам толерантности для данного организма или выходящий за эти пределы, оказывает на него негативное воздействие. Одно будет проявляться, даже если значения остальных факторов находятся в зоне оптимума. 2. Виды с широким диапазоном толерантности обычно более широко распространены, чем с узким. 3. Пределы толерантности для размножающихся особей (а также семян, проростков, эмбрионов и личинок) обычно более узкие, чем для неразмножающихся половозрелых растений или животных. 4. Абсолютное большинство видов не размножается круглогодично, но в определенные сезоны года, так чтобы отрождение молоди происходило тогда, когда условия среды оказались бы для них наиболее благоприятными. 5. В природе организмы часто обитают в условиях, не соответствующих оптимальному для них диапазону факторов, поскольку распространение видов часто в значительной степени обусловлено конкурентными отношениями с другими видами. 6. Если условия по одному фактору не оптимальны для вида, то может сузиться диапазон его толерантности и к другим факторам. 7. Адаптация к одному фактору, выражающаяся в расширении зоны толерантности по отношению к нему, может привести к расширению зоны толерантности по отношению к другому фактору (принцип неспецифичной адаптации).
Группы крови. Группы крови определяются различным сочетанием антигенов эритроцитов (агглютиногенов) и антигенов плазмы (агглютининов). Но понятие «группа крови» подразумевает все генетически наследуемые факторы, выявляемые в крови человека: сывороточные и клеточные факторы (эритроцитарные, лейкоцитарные, тромбоцитарные). Известно около 250 групповых антигенов, которые объединяются в системы. Для эритроцитов известно более 15 систем. Наиболее распространенная система – система АВО. Другие антигенные системы эритроцитов: 1. система Lewis, 2. система Kell, 3. система Duffy. Система групп крови АВО Открыта в 1901г. Карлом Ландштейнером. Аллели группы крови наследуются кодоминантно. Полиморфизм групп крови в системе определяется распространенностью и числом аллелей генов в популяции. Наиболее часто встречаются I и II группы. Выделяют 4 группы крови взависимости от сочетания агглютиногенов эритроцитов (А, В) и агглютининов плазмы (α, β).
Совместимость групп крови при гемотрансфузии:
В настоящее время для переливания крови используют кровь только одноименной группы. Определение групп крови. 1.Для определения групп крови сущ. изогемагглютинирующие сыворотки: анти-А и анти-В. В крови устанавливают наличие или отсутствие агглютиногенов. 2. Сущ. и перекрестный способ: одновременное определение при помощи сывороток + стандартные эритроциты. Сыворотка-налич. или отсутствие агглютиногенов; эритроциты-налич. или отсутствие агглютининов. 3.С помощью цоликлонов анти-А и анти-В (моноклональные Ат к антигенам эритроцитов А и В). Предназначены для определения групп крови с-мы АВО ч-ка взамен стандартных изогемагглютинирующих сывороток. Для каждой опред. гр. Крови применяется по одной серии реагента анти-А и анти-В. Дополнит. Контролем правильности определения гр. крови АВО реагентами анти-А и анти-В является моноклональный реагент анти-АВ. Система крови Резус Резус-фактор. Он так назван в связи с тем, что впервые был обнаружен в крови обезьяны мартышки (Macacus rhesus). Установлено, что Rh имеется в крови у 86% людей-это резсположительные люди (Rh+); у 14% он отсутствует-резусотрицательные люди (Rh-). Rh находится в эритроцитах, не зависит от пола и возраста, не связан с агглютиногенами эритроцитов. В отличие от агглютиногенов у Rh в сыворотке агглютининов или антител не имеется. Практическое значение: если повторно в кровь Rh- людям ввести кровь Rh+ людей происходит гемолиз. Это обусловлено тем, что у Rh- людей образуются анти-резус-агглютинины. Обнаружена связь между Rh матери и гемолитической болезнью новорожденных (у Rh- -матери образуются антитела к эритроцитам Rh+-плода). При переливании крови необходимо учитывать Rh-фактор.
Обнаружена связь между Rh матери и гемолитической болезнью новорожденных (у Rh- -матери образуются антитела к эритроцитам Rh+-плода). Клеточные ф-ры. Выделяют 2 основных типа клет р-ий вид имм-та: 2) Киллинг чужеродной кл-ки.- кл-ка-эффектор секретирует биол-акт в-ва, разрушающие кл-ку-мишень. - контактный(прямой контакт посредством спец рецептора)(внутриклет паразит).(NK) Киллинг (дистантный) осущ-т эозинофилы, они отн-ся к гранулярным лиф, вся их цитоплазма заполнена гранулами, в которых есть фер-ты разрушающие мембрану к.миш, с кот нет прочного контакта. Гранзимы выходят в окруж. среду и повреждает поверх. стр-ры паразита. ВИЧ-инфекция ВИЧ – медленно прогрессирующее заболевание с многолетней репликацией вируса в лим, Mf и клетках нервной ткани, вызывающей нарушение иммунной и нервно-психической регуляции организма => гибель больного от поражений вторичного порядка, обусловленных нарастающим иммунодефицитом. ВИЧ относится к РНК-содержащим ретровирусам. Способен синтезировать в клетках хозяина ДНК своего генома. Вирусная ДНК включается в геном лим, где ее экспрессия создает условия развития хронической инфекции. ВИЧ м. активировать неспециф.образом разные клоны лим.=> гибель лим. путем апоптоза. При ВИЧ есть дисбаланс субпопуляций Тлим, CTL преобладают над Тh, СTL- продуценты цитокинов – медиаторы ГИО. Кофактором, стимулирующие развитие ВИЧ явл-ся еще и провоспалительные цитокины (хемокины).!! Представление схемой: провос-ные цит. -> экпрессия R к хемокинам на восприимчивой кл. (необходимо) ->всязь вириона ВИЧ с кл!! При ВИЧ проис-д прогрессирующее сниж-ие актив-ти лимфопоэза, а на стадии СПИДа и гемопоэза. Переход ВИЧ в СПИД возникает, когда кол-во лим., способствующих к Ag-му распознаванию снижается до критического уровня. Особенности ВИЧ: - уникальная способность к изменчивости, - не передается обычными контактами (вода, пища), но кровью, половым путем. Для ВИЧ необходимо условия:- попадание ВИЧ в опред. дозе, - предрасположенность, определяется наличием инф-воспал процессов, соправождающ. Синтезом провоспал.цитокинов.
Химические исследования Белок в N отсутствует, наличие белка- протеинурия. Селективная протеинурия связанная с поражением нефрона и прохождением через базальную мембрану клубочков альбуминов, неселективная-с потерей белка разного Mr(все белки крови).Клубочковая протеинурия связана с падением “-” заряда базальной мембраны при ее повреждении иммунными комплексами(гламерулонефрит, амилоидоз почек).канальцнвая-нарушение адсорбции белка в проксимальном отделе (нефроз, наследственное поражение канальцев).Белок м.б. в моче больных онкологического профиля,ОПН. Микроскопия осадка Организованные элементы осадка: форменные элементы крови, эпителиальные клетки, цилиндры. Неорганизованные: бактерии, соли, слизь. Лейкоциты в небольшом кол-ве обнаруж. в норме (1-3 в поле зрения у Ж, 1-5 в п.з. у М). Более 4-6-лейкоцитурия. Причиной м б любые воспалительные и инфекционные процессы в почках, иммунное и аутоиммунное воспаление(нефротический синдром, гламерулонефрит, волчаночный нефрит). Эритроциты. Гематурия-присутствие крови в моче, связанное с поражением базальной мембраны клубочков и интерстициальной ткани почек (при гламерулонефрите, туберкулезе почек).В норме эритроциты отсутствуют. Эпителиальные клетки. Клетки переходного эпителия (при разрушении ткани почечных лоханок). Цилиндры (белковые или клеточные образования канальцевого происхождения-слепки). Появляются в моче при заболевании почек и бывают гиалиновые, зернистые, восковидные, эритроцитарные при тубулоинтерстициальной нефропатии, лейкоцитарные (зависит от частиц, покрывающих слепок). Неорганический осадок – соли (кристаллы мочевой кислоты, ураты, оксалаты). Клиренс Важное диагностическое значение при заболевании почек имеет количественная оценка уровня фильтрации в клубочках, реабсорбции и секркции в канальцах. Определение функции почек основан на расчете коэффициенте очищения – клиренс- объем плазмы крови, кот при прохождении через почки полностью очищается от метаболитов.
C = U/P∙V(мл/мин) U - концентрация исследуемого вещ-ва в моче P - концентрация исследуемого вещ-ва в плазме V – кол-во мочи за одну минуту. Бактериологическое исследование мочи с выделением возбудителя при наличии инфекционного агента. Анализ крови Лейкоцитоз-сепсис или инфекция, эозинофилия- тубулоинтерстициальный нефрит, изменение содержания электролитов гиперКемия, гипоСаемия, мочевая кислота(ОПН).Увеличение креатинина. Вопрос № 21 Методы диагностики заболеваний желудочно-кишечного тракта подразделяются на четыре основные группы: 1) инструментальные 2) лучевые 3) функциональные 4) лабораторные К первой группе методов относятся ЭНДОСКОПИЧЕСКИЕ МЕТОДЫ ИССЛЕДОВАНИЯ (ФГДС – фиброгастродуоденоскопия, колоноскопия, ректороманоскопия) ЭНДОСКОПИЧЕСКИЕ МЕТОДЫ ИССЛЕДОВАНИЯ. Визуальное исследование полых органов и полостей организма с помощью оптических приборов, снабженных осветительным устройством. При необходимости эндоскопия сочетается с прицельной биопсией, а также с рентгенологическим и ультразвуковым исследованием. Результаты, полученные при эндоскопии, могут быть документированы с помощью фотографирования, кино- и видеосъемки. Метод имеет важное значение для ранней диагностики предопухолевых заболеваний и опухолей различной локализации на ранних стадиях их развития, а также для дифференцирования их с заболеваниями воспалительной природы. Широкие перспективы перед эндоскопией открыла волоконная оптика. Гибкость волоконных световодов и способность передавать изображение и свет по искривленному пути сделали фиброскоп эластичным и легким в управлении. Это уменьшило опасность исследования и включило в сферу его объектов кишечник, женские половые органы, сосуды. Эндоскопические методы используют и в лечебных целях: удаление полипов, местное введение лекарственных препаратов, рассечение рубцовых стенозов, остановка внутреннего кровотечения, извлечение камней и инородных тел. Гастродуоденоскопия - это осмотр слизистой желудка с помощью гибкого гастроскопа с волоконной оптикой (гастрофиброскоп), производится с целью диагностики гастритов, язвенной болезни, новообразований, обнаружения и извлечения инородных тел и др. Специальной подготовки больного не требуется. Плановые гастроскопии выполняют утром натощак. Гастрофиброскопия в сравнении с рентгенологическим методом позволяет более точно определить характер патологического процесса. Колоноскопия (синоним: фиброколоноскопия, колонофиброскопия) — метод эндоскопической диагностики заболеваний толстой кишки. Колоноскопия является самым информативным методом ранней диагностики доброкачественных и злокачественных опухолей толстой кишки, неспецифического язвенного колита, болезни Крона и др. и позволяет в 80-90% случаев осмотреть толстую кишку на всем протяжении. Во время проведения колоноскопии визуально оценивается состояние слизистой оболочки толстой кишки. При колоноскопии возможно также выполнение различных лечебных манипуляций — удаление доброкачественных опухолей, остановка кровотечения, извлечение инородных тел, реканализапия стеноза кишки и др. Колоноскопию производят с помощью специальных приборов — колоноскопов. Иногда перед колоноскопией выполняется рентгенологическое исследование толстой кишки — ирригоскопия. Ректороманоскопия — метод эндоскопического обследования прямой кишки и дистального отдела сигмовидной кишки путем осмотра их внутренней поверхности с помощью ректороманоскопа, введенного через задний проход. Ректороманоскопия — наиболее распространенный, точный и достоверный метод исследования прямой кишки и нижнего отдела сигмовидной кишки. При помощи ректороманоскопа можно обследовать слизистую оболочку кишки на глубину 30—35 см от заднего прохода.
Группа лучевых методов исследования включает в себя: - рентгеноскопия Ва - УЗИ - ЯМР Рентгенологическое исследование тонкой кишки позволяет определить ее структуру и функциональные особенности. Перед исследованием больному предлагают выпить контрастную взвесь, состоящую из 100 г сульфата бария и такого же количества воды. Через 2,5 часа начинается поступление взвеси в слепую кишку. Более ранний и более поздний переход взвеси из тонкой кишки в слепую свидетельствует о нарушении моторной функции тонкой кишки. Рентгенологическое исследование толстой кишки проводится после приема бариевой взвеси через рот либо после вливания ее при помощи клизмы в прямую кишку (ирригоскопия). Когда взвесь введена через рот, поступление ее в слепую кишку происходит через 2,5 часа. Через 3-6 часов заполняется восходящий отдел, через 12 часов - поперечная ободочная кишка. Через 24 часа толстая кишка может быть видна на всем протяжении. Такое рентгенологическое исследование позволяет выявить нарушение моторной функции толстой кишки, дает представление о ее длине, положении, форме, тонусе. Вливание контрастного вещества при помощи клизмы (200 г взвеси сульфата бария на 1,5 л воды) позволяет выявить сужения, спаечные процессы и состояние рельефа слизистой толстой кишки. При рентгеноскопии желудка с заглатываемой бариевой смесью (150 сульфата бария на 200 мл воды) обращают внимание на рельеф слизистой оболочки желудка, его форму, контрактуру, перистальтику, дефекты наполнения, гиперсекрецию, наличие ниши, пилороспазм и т.д. Ирригоскопия - это рентгеновское исследование толстой кишки. Во время исследования через прямую кишку вводят контрастное вещество, после чего делают несколько снимков (в фазу тугого наполнения, опорожнения, двойного контрастирования с помощью воздуха). Ирригоскопия является одним из ведущих методов диагностики заболеваний толстой кишки. Подготовку назначает врач, заключается она в опорожнении кишечника с помощью слабительных и клизм. Ирригоскопия применяется для уточнения диагноза заболеваний толстой кишки (пороки развития, опухоли, хронический колит, дивертикулез, свищи, рубцовые сужения и др.). Ирригоскопия дает возможность получения информации о морфологических изменениях толстой кишки, что в плане диагностики нозологических форм представляется более ценным. Ирригоскопия нередко является решающим методом диагностики опухолей, дивертикулов толстой кишки. Увеличивает диагностические возможности ирригоскопии методика двойного контрастирования. В отношении таких заболеваний как колиты, туберкулез могут быть получены лишь косвенные признаки. Ядерный магнитный резонанс Избирательное поглощение веществом электромагнитного излучения. С помощью этого метода возможно изучение строения различных органов. Существенно снижает вредное воздействие на организм низкая энергия используемых излучений. Достоинством метода является его высокая чувствительность в изображении мягких тканей, а также высокая разрешающая способность, вплоть до долей миллиметра. Позволяет получить изображение исследуемого органа в любом сечении и реконструировать их объемные изображения. Определение понятия «компенсация». Виды, стадии развития компенсаторных реакций, структурные основы и механизмы компенсации нарушенных функций. Роль генетического аппарата в развитии адаптационных, компенсаторных реакций, «Цена» адаптации и компенсации. Вызывают доклинический (когда признаки болезни еще не выявляются) и клинический период развития болезни. Пр.: атеросклероз (клинический период: развитие стенокардии, ИМ). Развитие болезни долгое время скрывают компенсаторные реакции. Компенсация – процесс, присущий больному организму, обеспечивающий уменьшение либо ликвидацию структурно-функционального нарушения, вызванного повреждением, за счет количественного или качественного изменения функции микросистем, органов или систем, не пострадавших при повреждении. Компенсаторные реакции: срочные (развиваются на основе предсуществующих механизмов) долговременные. Сочная реакция при гипоксии: ↑ ЧСС→↑ частоты и глубины дыхания→↑ спазм сосудов → выброс крови из депо. Долговременная реакция: гипертрофия сердечной мышцы (через 1-2 месяца), гипертрофия легочной ткани; ↑ количества эритроцитов, продуцируемых костным мозгом. Фазы (стадии) развития компенсации 1. Стадия становления (аварийная) 2. Стадия закрепления (устойчивой гиперфункции) 3. Стадия истощения (декомпенсации) Роль генетического материала. «Цена» адаптации и компенсации. Долговременные реакции компенсации обеспечиваются за счет гипертрофии и гиперплазии. Для этого требуется включение генетических механизмов. Когда есть повреждение органа или клетки, то функционирование неповрежденных структур возрастает. В клетке образуются метаболиты. Которые влияют на генетический аппарат клетки, вызывают дерепрессию определенных генов. Это приводит к активации ДНК и РНК, усиливается продукция клеточных и внеклеточных структур. В результате этого происходит снижение интенсивности функционирования этих неповрежденных структур. Но постепенно начинают накапливаться метаболиты изнашивания. Истощаются резервы генетического аппарата и резервы этих активных структур. Цена адаптации (компенсации) – комплекс отрицательных последствий, которые возникают в тех органах или тканях, которые участвуют в процессе адаптации (компенсации). Пример: если гипертрофия какого-либо органа продолжается, то она происходит за счет истощения организма. Патологические и компенсаторные реакции организма. Их общая характеристика. Примеры. двойственная природа развития болезни. Механизм выздоровления. Болезнь развивается в результате структурно-функциональных нарушений. В процессе развития болезни нарушается гомеостаз. В развитии болезни большую роль играет интегративная система организма: ИС, ССС, НС. Существует взаимосвязь развития болезни с ОС. Пусковым звеном в развитии болезни является повреждение; ↓ адаптивных возможностей организма. В ответ на повреждение развиваются защитные и компенсаторно-приспособительные реакции. Болезнь – нарушение процессов адаптации. Происходит нарушение обычного равновесия системы. Патологические реакции – реакции, присущие больному организму. Они проявляются структурными и функциональными нарушениями. Пример: химический ожог→деструкция ткани→отек→зуд, боль, повышение температуры. Патологические реакции носят дезадаптивный характер, приводят к снижению адаптивных возможностей организма. В ответ на патологическую реакцию в организме всегда развивается компенсаторная реакция. Взаимодействие компенсаторных и патологических реакций – движущая сила болезни. По своей сути компенсаторные реакции являются разновидностью адаптивных. Они развиваются в ответ на сигнал о дефектах и направлены на нейтрализацию возникших нарушений. При определенных условиях компенсаторные реакции могут перейти в патологические. Этапы развития болезни: - преобладают патологические реакции; - включаются срочные компенсаторные реакции; - затем включаются долговременные КПР. Если они хорошо выражены, то наступает выздоровление. Пример: инфаркт миокарда. Первые 2 недели преобладают патологические реакции, при этом возможны осложнения, смерть. В ответ на гипоксию ↑ ЧСС, происходит спазм сосудов и т.д. Постепенно начинает образовываться рубец. Если его образование и заживление произошло нормально, то наступает выздоровление. Если заболевание переходит в хроническую форму, то происходит декомпенсация, изнашивание структур долговременной компенсации. М/говорить, что выздоровление начинается с начала заболевания. Механизмы выздоровления: 1. Срочные (аварийные) защитно-компенсаторные реакции -защитные рефлексы (рвота, кашель, чихание); -стресс-реакции (выброс адреналина, глюкокартикоидов); -изменение АД, частоты дыхания, теплоотдачи. 2. Относительно устойчивые: -включение резервных мощностей органов и регуляторных систем; -нейтрализация ядов, токсинов; активация соединительной ткани. 3. Устойчивые защитно-компенсаторные реакции: - компенсаторная гипертрофия; -репаративная регенерация; -иммунитет. Смертность населения На рост смертности влияет резкое ухудшение здоровья населения. общая заболеваемость населения в целом по стране постоянно возрастает. Наиболее заметное увеличение приходится на долю болезней мочеполовой, костно-мышечной систем и соединительной ткани, психических расстройств, болезней нервной системы и органов чувств, заболеваний крови и кроветворных органов, новообразований. 4. Растет инфекционная заболеваемость болезней социального неблагополучия (туберкулез, сифилис, СПИД), а также алкоголизмом и возрастает доля курящих. 5. Неблагоприятными темпами растет заболеваемость среди подростков 15 – 17 лет. 15% всех выпускников школ считают себя здоровыми. 45% имеют функциональные патологии. 40% - хронические заболевания. Также растет инвалидность с детства. 6. Важнейшей составляющей процесса воспроизводства населения остается рождаемость. Суммарный коэффициент рождаемости за последний период снизился с 1,9 до 1,3. В Беларусь наблюдается сверхнизкая рождаемость, т.е. с таким ее уровнем, который намного ниже порога воспроизводства населения. Умирает людей больше, чем рождается. Число проводимых абортов сравнимо с числом родившихся детей. 7. На демографические процессы оказывает влияние миграция населения. Наблюдается миграция из СНГ и стран Балтии. 8. Усиливается процесс старения населения. В соответствии с классификацией ООН население считается старым если лиц в возрасте 65 лет и старше составляет 7%, в РБ – 13% Вывод: современная ситуация в Беларуси характеризуется как системный демографический кризис. Его составляющие, помимо высокой смертности, резкое снижение рождаемости, высокая доля абортов, прогрессирующее снижение воспроизводство населения, деформированная половозрастная структура, резкое ухудшение здоровья и низкая продолжительность жизни людей.
Внутриклеточный транспорт Целенаправленный транспорт необходим каждой клетке. Особенно это важно для больших клеток, где развита компартментализация. У прокариот транспорт внутри клетки происходит проще (вспомните амёбу). Итак, виды внутриклеточного транспорта: а) диффузия. Может происходить в случае существования градиента концентрации б) целенаправленный транспорт макромолекул: участвуют пучки микротрубочек (тубулин) (+)-----------------(-) а по ним «идут» молекулы динеина (белок из семейства белков миозина: динеин, кинезин, миозин), которые «несут на себе» транспортируемую молекулу белка. Нужно сказать, что динеин имеет глобулярную часть, которая и прикрепляется к микротрубочке. Таким образом, пучки микротрубочек выполняют роль РЕЛЬС! Вспомните как двигаются поезда!? Ну, как впечатляет? ….кстати понятно, что здесь написано? Мне – с трудом. Главное – это ВАШЕ ВООБРАЖЕНИЕ! в) транспорт в мембранной упаковке: - везикулы d=0,1 – 1,5 мкм; эта везикула прикрепляется к своеобразной молекуле диненина вышеописанным способом. - транспорт в лизосомах Не относится к транспорту в мембранной упаковке циклоз пластид и митохондрий г) да, не забывайте про активный транспорт (электрохимический градиент, Na-K насосы) Периоды клеточного цикла. Функция воспроизведения и передачи генетической информации обеспечивается в ходе клеточного цикла. Клеточный цикл - совокупность явлений между двумя последовательными делениями клетки или между ее образованием и гибелью Клеточный цикл включает собственно митотическое деление и интерфазу - промежуток между делениями. Интерфаза значительно более длительна, чем митоз (обычно занимает не менее 90% всего времени клеточного цикла) и подразделяется на три периода: пресинтетический или постмитотический (G1), синтетический (S) и постсинтетический или премитотический (G2). 1. G1 период наступает сразу же после митотического деления клетки и характеризуется активным ростом клетки и синтезом белка и РНК, благодаря чему клетка достигает нормальных размеров и восстанавливает необходимый набор органелл. G1 -период длится от нескольких часов до нескольких дней. В течение этого периода синтезируются особые "запускающие" белки (trigger proteins), или активаторы S-периода. Они обеспечивают достижение клеткой определенного порога (точки R - рестрикции или ограничения), после которого она вступает в S-период. Контроль, осуществляемый на уровне точки R (при переходе из G1 в S), ограничивает возможность нерегулируемого размножения клеток. Проходя эту точку, клетка переключается на последующую регуляцию внутренними факторами клеточного цикла, которая обеспечивает за
|
|||||||||||||||||||||||||||||
Последнее изменение этой страницы: 2016-04-07; просмотров: 1527; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.139.79.187 (0.018 с.) |