Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Азотистые соединения и витаминыСодержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
В молоке азотистые соединения представлены белками – казеином (около 85% от общего количества белков), лактоальбумином (до 13%) и лактоглобулином (около 2%), а также липопротеином оболочек жировых шариков (небольшое количество). Из небелковых азотистых соединений в молоке содержатся мочевина, креатин, креатинин, мочевая кислота, пуриновые основания, аммиак, гиппуровая кислота, аминокислоты и пептоны. Количество небелкового азота в молоке составляет около 0,05% (Г. С. Инихов, 1970). Содержание свободных аминокислот в молоке незначительно – от 0,5 до 2 мг%. Различные исследователи обнаруживали в нем аргинин, гистидин, лизин, лейцин, изолейцин, валин, глицин, аланин, глютаминовую кислоту, пролин, треонин, аспарагиновую кислоту, серии. Последние две аминокислоты присутствуют в очень небольшом количестве (Л. Дейч и Е. Самуэльсон, 1959; Р. Дж. Блок, 1951). Исследования Э. Е. Грудзинской и Н. С. Королевой (1970) также показали наличие в молоке метионина и тирозина. Р. Дж. Блоком (1951) и В. Ц. Зантом и Ф. Е. Нельсоном (19536) в безбелковои фракции обезжиренного молока обнаружены три пептида. Азотистые соединения молока служат источником питания микроорганизмов. Возможность и интенсивность развития молочнокислых бактерий зависят прежде всего от их потребностей в тех или иных источниках питания, наличия нужных веществ в молоке в свободном виде и имеющегося набора ферментов для разложения и усвоения этих веществ. Чем более выражена способность микроорганизмов к протеолизу, тем меньше влияют на микроорганизмы различные колебания в составе молока. Требования, предъявляемые молочнокислыми бактериями к азотистому составу среды, были впервые исследованы С. Орла-Йенсеном с сотрудниками (1936). Им была установлена потребность молочнокислых бактерий в отдельных аминокислотах и стимуляция их роста при добавлении различных естественных экстрактов (дрожжевого автолизата, печеночного экстракта и пр.). Он отметил, что потребность в дополнительных источниках азотного питания у термобактерий выше, чем у стрептобактерий и стрептококков. В зависимости от потребности в различных источниках азота С. Орла-Йенсен разделил молочнокислые бактерии на три группы: бактерии, нуждающиеся в сложном комплексе аминокислот и витаминах (род Thermobacterium); бактерии, хорошо развивающиеся на цистеине и на аммонийных солях (род Streptobacterium); бактерии, которые могут развиваться на аммонийных солях в качестве единственного источника азота (род Streptococcus). Пептоны. Добавление пептонов к молоку и молочной сыворотке усиливает рост многих штаммов молочнокислых стрептококков (Str. lactis и Str. cremoris) и некоторых палочек (X. Уолкер, 1957). Пептоны используются молочнокислыми бактериями (Т. Дульман, 1937, 1939), однако на средах, содержащих в качестве единственного источника азота пептон, большинство молочнокислых бактерий, особенно палочек, но дает максимального роста (С. А. Королев, 1932, А. М. Скородумова, 1962). . Пептиды. Установлено, что некоторые пептиды способствуют росту молочнокислых бактерий в значительно большей степени, чем эквивалентные количества аминокислот, входящих в их состав. В то время как структурно-близкие аминокислоты могли оказывать угнетающее воздействие, если количество их в среде не было строго сбалансировано, с пептидами такого явления не наблюдалось (Б. Рпйтер и А. Моллер-Мадсен, 1963). Очищенные пептиды оказывают заметное стимулирующее действие на Str. lactis, Str. cremoris, Lbm. casei.
По-видимому, стимулирующий эффект ферментативных гидролизатов казеина можно Аминокислоты. А. В. Андерсон и Р. П. Элликер (1953), изучая потребности молочнокислых бактерий в отдельных аминокислотах, показали, что большинству из них для максимального роста требовалось, по крайней мере, 16 аминокислот. По данным этих авторов, а также Б. Рийтера и Дж. Орам (1962), для Str. lactis и Str. cremoris необходимы пролин, глютамин и глютаминовая кислота, валин, ме-тионин, лейцин, изолейцин, гистидин. Кроме того, для развития Str. cremoris требовались фенилаланин и аргинин. Для развития большинства штаммов Str. cremoris требовался более разнообразный набор аминокислот. Лишь немногие штаммы Str. cremoris нуждались в цистине, триптофане, аспарагиновой кислоте, тирозине и серине. Для всех культур Str. lactis и Str. diacetilactis и для большей части Str. cremoris эти аминокислоты можно было полностью исключить из среды. В отличие от Str. lactis, Str. diacetilactis и Str. cremoris, ароматообра-зующие стрептококки Leuc. citrovorum и Leiic. dextranicum нуждались в триптофане, но лишь немногие из них требовали пролин. Потребность в остальных аминокислотах была такой же, как и у Str. lactis, Str. cremoris и Str. diacetilactis. Культуры Str. lactis var. mal-tigenes, придающие молоку, в котором они развиваются, солодовый привкус, нуждаются в лейцине, изолейцине и валине (Е. X. Март, 1962). Из свободного лейцина образуется 3-метилбутанол, наличие которого и обусловливает появление солодового привкуса (X. Лесмент, 1960, А. Моллер-Мадсен и X. Йенсен, 1962). По данным Нур-мико (цитируется по Е. А. Ждановой и П. Ф. Дьяченко, 1962), потребность Str. thermophilus в аминокислотах зависела от наличия в среде кальция. Глютаминовая кислота и цистин были нужны для всех штаммов, гистидин и триптофан – лишь для очень немногих. Валин, глицин, треонин, метионин и изолейцин требовались для большинства штаммов в среде, не содержащей кальция; в присутствии же кальция они оказывали угнетающее действие па эти микроорганизмы. Влияние аспарагинопой кислоты, лейцина, аланина, тирозина и триптофана также зависело от содержания в среде кальция. Э. С. Батиста, Р. С. Дехайя и М. Л. Спекк (1966) установили, что основными факторами роста термофильного стрептококка являются глицин и гистидин. Э. Е. Грудзинской (1970) было показано, что термофильный стрептококк при совместном развитии в молоке с болгарской палочкой почти полностью потребляет в первые часы серии, глицин, глютаминовую кислоту, аланин, тирозин, метионин и валин. Установлено, что серин угнетающе действует на развитие многих стрептококков в синтетических питательных средах. В некоторых случаях токсичность серина можно было уменьшить добавлением значительного количества аланина. То же самое наблюдалось и в отношении метионина, ингибиторное действие которого снижалось при добавлении треонина (М. Л. Спекк, 1962). Этим, вероятно, можно объяснить, почему отсутствует угнетение молочнокислых стрептококков, если молоко обогащается смесью аминокислот, содержащихся в гидролизатах белка или субстратах. Приведенные данные свидетельствуют также об исключительной важности правильного сбалансирования содержания различных аминокислот при составлении синтетических сред для развития молочнокислых бактерий. Пуриновые и пиримидиновые основания, нуклеиновые кислоты. Развиваясь в молоке, молочнокислые бактерии испытывают меньший недостаток в аминокислотах, чем, например, в пуриновых и пирими-диновых основаниях и нуклеиновых кислотах (Ц. Н. Хьютанен и В. Л. Вильяме, 1963). В молоке этих соединений недостаточно, поэтому при добавлении их усиливается кислотообразование молочнокислых бактерий. Особенно большой эффект наблюдался при добавлении инозина. Р. С. Дехайя и М. Л. Спекк (1962) установили, что некоторые слабые штаммы Str. lactis вырабатывают вещество, стимулирующее развитие сильных рас. Это вещество было идентифицировано как аденин. Чистый аденин обладал темп же свойствами и при добавлении к молоку стимулировал рост энергичных культур Str. lactis и Str. cremoris. Некоторые пуриновые основания, в частности гуанин и ксантин, могут угнетающе действовать на молочнокислые палочки (В. Боттацци, 1962). Это действие уменьшается в присутствии аденина и гипоксантина. Таким образом, аденин является, по-видимому, наиболее важным из пуринов в азотном питании молочнокислых бактерий. Активация, оказываемая на микроорганизмы заквасок экстрактом панкреатиновой железы, объясняется наличием в нем инозина, гипоксантина и аденина. По-видимому, здесь нельзя не учитывать и протеолитического действия, которое оказывает панкреатин на белки молока. Витамины. Молочнокислые бактерии проявляют довольно высокую требовательность к наличию ряда витаминов в питательной среде. Многие микроорганизмы, например, дрожжи, уксуснокислые, пропионовокислые бактерии, способны синтезировать витамины. Молочнокислые стрептококки (Str. lactis, Str. cremoris, Str. diacetilac-tis) испытывают потребность в никотиновой кислоте, ниацине и биотине. Не требуются для этих микроорганизмов тиамин, фолиевая кислота и Bi2. Пиридоксаль стимулирует их развитие. Рибофлавин нужен только Str. cremoris (Б. Рийтер и А. Моллер-Мадсен, 1963; Ц. Ф. Нивен, 1944). По данным А. Андерсона и П. Р. Элликера (1953), тиамин и фолевая кислота все же оказывали стимулирующее действие на большинство исследованных ими штаммов стрептококков. Возможно, что такое расхождение в результате объясняется различной сбалансированностью использованных сред. Потребности молочнокислых бактерий в витаминах для роста и образования ароматических веществ различны. Так, по данным С. Анан-тарамаиаха, Ц. Анантакришнана и К. Йя (1962), Leuc. citrovorum хорошо развивались при отсутствии тиамина, но не могли без него образовывать ацетоин. При отсутствии пантотената кальция эти микроорганизмы плохо росли, но хорошо продуцировали ацетоин. Те же результаты были получены с никотиновой кислотой. Это очень важно учитывать при выборе состава среды. С. Орла-Йенсен с сотрудниками (1936а) установил, что молочнокислые бактерии ощущают наибольшую потребность в витаминах группы В. Этот факт подтвержден также М. Непомнящей, М. Тевелевич (1955), Я. Черна, Я. Пиковой, Я. Блаттна (1972) и другими авторами. В натуральном молоке содержатся почти все витамины этой группы. Стимуляцию развития молочнокислых бактерий при добавлении к молоку дрожжевого автолизата либо растительных экстрактов можно объяснить наличием в них витаминов группы В или неизвестных факторов роста. Усиление развития молочнокислых бактерий при совместном культивировании с дрожжами, уксуснокислыми бактериями и другими микроорганизмами в какой-то степени, несомненно, связано со способностью дрожжей и уксуснокислых бактерий к синтезу витаминов. Для большинства штаммов Str. thermophilus требуются рибофлавин, биотип, пантотеновая и никотиновая кислоты. Стимулирующее действие оказывали также тиамин и пиридоксаль (Б. Рийтер и А. Мол-лер-Мадсен, 1963). М. Е. Шарп (1962) установила, что для развития молочнокислых палочек большое значение имеет концентрация фолевой кислоты в среде. Для развития молочнокислых бактерий в молоке наибольшее значение как источник энергии имеет лактоза. Эти микроорганизмы предварительно расщепляют лактазу на глюкозу и галактозу. Прежде чем галактоза может быть использована организмом, она должна быть превращена в форму глюкозы (В. Е. Сандин и др., 1962). Это превращение осуществляется в результате реакций фосфорилирования, конечным продуктом которых является глюкозо-1-фосфат, подвергающийся в дальнейшем брожению по той же схеме, что и глюкоза. Молочнокислые бактерии по характеру продуктов брожения делят на гомоферментативные и гетероферментативные. Гомоферментативное молочнокислое брожение характеризуется количественным превращением сбраживаемых углеводов в молочную кислоту, выход которой достигает 98–98,6%. Гомоферментативные молочнокислые бактерии почти не используют углеводы в конструктивном обмене, который осуществляется в основном за счет использования готовых аминокислот субстрата. Гетероферментативные молочнокислые бактерии обладают ферментами, необходимыми для прямого окисления и декарбоксилировапия промежуточных продуктов брожения. Однако в их ферментной системе нет альдолазы и триозофосфатизомеразы. Поэтому они не могут проводить молочнокислое брожение по гексозодифосфатной схеме и образуют из глюкозы, кроме молочной кислоты, приблизительно в эквимолекулярных количествах этиловый спирт, уксусную кислоту, углекислый газ, а также ряд других побочных продуктов. Считается, что способность молочнокислых бактерий образовывать ферменты, свойственные лишь одному из метаболитических путей (гексозомонофосфатному или гексозодифосфатному), служит энзиматпческой основой для их разделения на гетероферментативные и гомоферментативные (И. И. Климовский, 1966, и др.). Однако, по-видимому, это положение может быть в дальнейшем подвергнуто корректировке. Так, Р. Нандан (1969), изучая метаболизм Str. diacetilactis, Str. cremoris и Str. lactis, установил, что все эти микроорганизмы способны доводить до конца декарбоксилирование пирувата и других а-кетокислот. На основании этих данных он высказывает сомнение в целесообразности отнесения этих микробов к строго го-моферментативной группе. Наиболее ценными побочными продуктами молочнокислого брожения являются ацетоин, ацетальдегид и особенно диацетил. Существуют разные мнения об источниках, из которых получаются эти вещества. Установлено, что при добавлении к среде лимонной кислоты образование диацетила и ацетоина усиливается. Однако ни глюкоза, ни лимонная кислота, добавленные к среде в отдельности, не влияют на образование диацетила. Диацетил (СНз–СО–СО–СН3)–более окисленная форма, чем ацетоин (СН3–СНОН–СО–СН3). По данным А. К. Максимовой (1954), он может накапливаться лишь в закваске, обладающей слабыми редуцирующими свойствами, где не создаются условия для восстановления диацетила в ацетоин. При быстром снижении окислительно-восстановительного потенциала содержание диацетила в культуре резко падает. Кроме того, установлено, что для накопления диацетила культурами Str. diacetilactis необходимы определенные условия среды: присутствие в среде цитрата; рН около 4,5–4,4; температура 25° С. На образование диацетила существенно влияет режим тепловой обработки молока. Снижение окислительно-восстановительного потенциала, связанное с образованием сульфгидрильных групп – SH, приводит к уменьшению содержания диацетила в закваске (А. К. Максимова, 1954). В результате аэрации (перемешивания) закваски в процессе сквашивания усиливалось образование диацетила и создавались более окисленные условия среды. Исследования А. Свенсена (1970) показали, что в процессе развития закваски, состоящей из Str. lactis, Str. cremoris и Leuconostoc, в ней накапливаются диацетил, ацетальдегид, ацетон, этиловый спирт и ацетоин. Максимальное количество всех ароматических веществ в закваске обнаруживалось через 12–18 ч после заквашивания; через 18 ч образовывалось 6–10 мг/кг диацетила, через 12 ч 7–2 мг/кг ацетальдегида, через 18 и 24 ч 0,86–0,92 мг/кг ацетона, через' 72 ч – 28–30 мг/кг этилового спирта, через 18 ч 161–76 мг/кг ацетона. В дальнейшем начиналось снижение их количества. Исключение составляет этиловый спирт, содержание которого продолжало повышаться за весь период наблюдения (72 ч). Как видно из приведенных данных, для закваски этого типа преобладающим побочным веществом был ацетоин, диацетила содержалось примерно в 10 раз меньше. В. Пало и В. Кохова (1969), исследуя закваску для сквашивания сливок, установили, что ненормально высокое содержание в ней ацетальдегида и этилового спирта сопровождалось появлением пороков вкуса и аромата. Основным побочным продуктом брожения термофильных молочнокислых палочек (Lbm. bulgaricum) является ацетальдегид (И. В. Петте и X. Лолкема, 19506, М. Шульц и Г. Хингст, 1954; Ф. Горнер, В. Пало, М. Сегинова, 1972). При этом в первые часы сквашивания йогурта накопление ацетальдегида происходит одновременно с накоплением молочной кислоты. Выдержка продукта после образования сгустка при 45° С приводила к снижению ацетальдегида через 4–5 ч. Хранение продукта после сквашивания на холоду позволяло поддерживать содержание ацетальдегида в нем на первоначальном уровне в течение 18 ч после сквашивания (Е. В. Мельникова, 1973). Жиры и жирные кислоты Долгое время считалось, что жир не требуется для развития молочнокислых бактерий, так как они одинаково хорошо растут и в цельном, и в обезжиренном молоке. Однако исследования С. Е. Джиллиланда и X. Ц. Ольсона (1963) показали, что в первые 10–12 ч развития молочнокислых бактерий в цельном молоке отмечалось более быстрое кислотообразование, чем в обезжиренном. При добавлении к обезжиренному молоку цельного или пахты в соотношении 1: 1 ускорялось кислотообразование в этой среде. Авторы предполагают, что вещество, стимулирующее кислотообразование, содержится в липопротеиновых оболочках жировых шариков. Пастеризация не снижала стимулирующего действия. Практически заметной разницы в энергии кислотообразования молочнокислых бактерий при изготовлении заквасок на цельном и обезжиренном молоке не наблюдается. Отмечено, что в молоке, подвергнутом значительному лпполизу, поверхностное натяжение снижается, в результате чего угнетается развитие молочнокислых стрептококков. Повышенная активность фермента липазы в молоке характерна для раннего периода лактации. Жир в молоке разлагается также вследствие развития липолптпче-ских микроорганизмов. В результате пастеризации молока липолпти-ческие микроорганизмы погибают и липаза инактивируется. При добавлении прогорклого молока к нормальному молочнокислый процесс замедлялся, снижалось образование аромата. Степень замедления свертывания молока находилась в прямой зависимости от количества прогорклого молока (Ф. Дж. Бэбел, 1955). В дальнейшем было выяснено, что подавление развития молочнокислых бактерий в прогорклом молоке обусловлено не только снижением поверхностного натяжения, но и наличием в нем свободных жпр-ных кислот или их солей, часть из которых оказывает на стрептококков токсическое действие. Установлено, что каприловая, каприновая и лауриновая кислоты в количестве 0,1% угнетали развитие молочнокислых стрептококков, причем степень подавления их возрастала с увеличением концентрации этих кислот в среде. Масляная, лино-левая, линоленовая, арахидиновая и пальмитиновая кислоты в таком же количестве не оказывали угнетающего действия. При добавлении 0,5% стеариновой кислоты почти полностью прекращалось кислотообразование у Str. lactis (Ф. Дж. Бэбел, 1962). Имеются указания о стимуляции развития некоторых молочнокислых стрептококков и палочек олеиновой кислотой (Е. М. Фостер и др., 1961). Практически свободные жирные кислоты и их соли не влияют существенно на энергию кислотообразования молочнокислых бактерий при производстве кисломолочных продуктов, так как обычно в молоке содержится незначительное количество их. Угнетающее действие свободных жирных кислот можно снизить, внеся повышенное (5%) количество закваски (Ф. Дж. Бэбел, 1955). Липазная активность молочнокислых бактерий очень мала по сравнению с другими типичными липолитическими микроорганизмами. Вряд ли она может играть существенную роль при производстве кисломолочных продуктов. Некоторые немолочнокислые микроорганизмы молока, например Oidium lactis, обладают способностью активно использовать молочный жир и свободные жирные кислоты в процессе обмена веществ. При наличии на поверхности сквашенного молока слоя сливок создаются благоприятные условия для развития молочной плесени. Поэтому при культивировании кефирных грибков, где есть опасность их плесневения, целесообразнее использовать обезжиренное молоко. Соли и микроэлементы Содержание поваренной соли в молоке в концентрации 0,5–1,0% ускоряет развитие стрептококков, в концентрации 5% –заметно подавляет. Различную устойчивость отдельных видов стрептококков к действию поваренной соли используют для дифференциации видов. Так, энтерококки развиваются при содержании в среде 6,5% NaCl; ацидофильная и болгарская палочки –до 2%; термоустойчивые палочки –2–3%. Другие виды молочнокислых бактерий не могут расти при концентрации соли более 1–2%. По данным И. Рашича, Б. Обрадовича и С. Митича (1965), присутствие пептона в среде снижает ингибирующее действие поваренной соли в концентрации 4–6,5% на рост Str. diacetilactis и Leuconostoc. Методом замещения ионов в молоке установлено, что молочнокислые бактерии больше всего нуждаются в магнии и натрии, причем магний не может быть заменен кальцием. В результате удаления из молока железа энергия кислотообразования заквасок несколько снижалась, но при замене железа кобальтом и цинком она восстанавливалась (Б. Рийтер и А. Моллер-Мадсен, 1963). Т. Гелслоот и Ф. Хассинг (1962 г) установили, что кальций необходим для развития заквасок, содержащих в качестве ароматообразователей виды Leuconostoc. Str. diacetilactis развивался в декальцинированной среде нормально. Магний стимулировал образование диацетила культурами Leuconostoc, но не влиял на Str. diacetilactis. При добавлении к молоку марганца устранялось сезонное влияние состава молока на развитие ароматообразующих бактерий (Т. Гелслоот, Ф. Хассинг, 1962а). Впоследствии И. С. Йенсен, А. И. Оверби (1970) подтвердили, что, добавляя 0,24 мг Ма++ на 1 л молока, можно после нескольких пассажей повысить в комбинированной закваске содержание ароматообразующих стрептококков Leuc. citrovorum. Однако, как показали исследования Е. Андерсона и X. Лесмента (1970), стимулирование развития Leuc. citrovorum при добавлении марганца приводило к раннему сбраживанию лимонной кислоты и почти полному восстановлению четырехуглеродных соединений до 2,3-бутилен-гликоля, а следовательно, к исчезновению аромата
|
||||
Последнее изменение этой страницы: 2016-04-26; просмотров: 444; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.135.189.237 (0.013 с.) |