Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Статистична і кореляційна залежність. Функції та лінії регресії↑ ⇐ ПредыдущаяСтр 6 из 6 Содержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Показником, що вимірює стохастичний зв’язок між змінними, є коефіцієнт кореляції, який свідчить з певною мірою ймовірності, наскільки зв’язок між змінними близький до строгої лінійної залежності. За наявності кореляційного зв’язку між змінними необхідно виявити його форму функціональної залежності (лінійна чи нелінійна), а саме: ; ; Наведені можливі залежності між змінними X і Y називають функціями регресії. Форму зв’язку між змінними X і Y можна встановити, застосовуючи кореляційні поля, які зображені на рисунках Для двовимірного статистичного розподілу вибірки ознак (Х, Y) поняття статистичної залежності між ознаками Х та Y має таке визначення: статистичною залежністю Х від Y називають таку, за якої при зміні значень ознаки Y = yi змінюється умовний статистичний розподіл ознаки Х, статистичною залежністю ознаки Y від Х називають таку, за якої зі зміною значень ознаки X = xi змінюється умовний статистичний розподіл ознаки Y. Між ознаками Х та Y може існувати статистична залежність і за відсутності кореляційної. Але коли існує кореляційна залежність між ознаками Х та Y, то обов’язково між ними існуватиме і статистична залежність Парна лінійна регресія. Вибірковий коефіцієнт кореляції та його властивості Ураховуючи вплив на значення Y збурювальних випадкових факторів, лінійне рівняння зв’язку X і Y можна подати в такому вигляді: , де , є невідомі параметри регресії, є випадковою змінною, що характеризує відхилення y від гіпотетичної теоретичної регресії. Отже, в рівнянні (485) значення «y» подається у вигляді суми двох частин: систематичної і випадкової . Параметри , є невідомими величинами, а є випадковою величиною, що має нормальний закон розподілу з числовими характеристиками: , . При цьому елементи послідовності є некорельованими У результаті статистичних спостережень дослідник дістає характеристики для незалежної змінної х і відповідні значення залежної змінної у. Вибірковий коефіцієнт кореляції Рівняння лінійної парної регресії: або , де і називають коефіцієнтом регресії. Для обчислення необхідно знайти ; ; Як бачимо, коефіцієнт кореляції близький за своїм значенням до одиниці, що свідчить про те, що залежність між Х та Y є практично лінійною Надійний інтервал для лінійної регресії Ураховуючи те, що і є випадковими величинами, то і лінійна функція регресії буде випадковою. Позначимо через значення ознаки Y, обчислимо за формулою . Тоді
. Звідси дістали: або .Випадкова величина має t- розподіл із ступенями свободи. Ураховуючи можна побудувати довірчий інтервал для лінійної парної функції регресії із заданою надійністю γ, а саме: . випливає Лінійна регресія для двовимірного статистичного розподілу Ураховуючи вплив на значення Y збурювальних випадкових факторів, лінійне рівняння зв’язку X і Y можна подати в такому вигляді: , де , є невідомі параметри регресії, є випадковою змінною, що характеризує відхилення y від гіпотетичної теоретичної регресії. Отже, в рівнянні (485) значення «y» подається у вигляді суми двох частин: систематичної і випадкової . Параметри , є невідомими величинами, а є випадковою величиною, що має нормальний закон розподілу з числовими характеристиками: , . При цьому елементи послідовності є некорельованими У результаті статистичних спостережень дослідник дістає характеристики для незалежної змінної х і відповідні значення залежної змінної Множинна лінійна регресія На практиці здебільшого залежна змінна пов’язана з впливом не одного, а кількох аргументів. Довірчий інтервал для множинної лінійної регресії Матриця Х містить m лінійно незалежних векторів-стовпців, а це означає, що ранг її дорівнюватиме m і визначник Отже, матриця має обернену. Дисперсії статистичних оцінок визначають з допомогою кореляційної матриці для вектора Коефіцієнт множинної регресії Тісноту між ознаками Y та X, де , вимірюють з допомогою коефіцієнта множинної кореляції R, що є узагальненням парного коефіцієнта кореляції rij і обчислюється за формулою . Чим ближче значення R до ±1, тим краще вибрано функцію регресії Нормування коефіцієнтів регресії Множинна лінійна регресія дає змогу порівняти вплив на досліджуваний процес різних чинників. У загальному випадку змінні репрезентують чинники, що мають різні одиниці виміру (кілограми, гривні, метри тощо). Отже, для того щоб порівняти і з’ясувати відносну вагомість кожного з чинників, використовують так звані нормовані коефіцієнти регресії, які визначають за формулою
де — коефіцієнт регресії після нормування; — виправлене середнє квадратичне відхилення змінної — виправлене середнє квадратичне відхилення ознаки Y.
|
||||
Последнее изменение этой страницы: 2016-04-23; просмотров: 607; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.224.44.207 (0.007 с.) |