Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Мейоз, его биологическое значение. Характеристика редукционного и эквационного деления мейоза.

Поиск

происход в жизн цикле организмов размножающихся половым путём, при мейозе из одной диплойдной клетки образ 4 гаплойдные клетки. Мейоз сост из 2х послед делений.

В мейоз вступает клетка с набором генетич материала 2n4c. в результ редукцион дел образ 2 гаплойдные клетки с двухроматидными хромосомами. В результате эквацион делен образ 4е гаплойдные клетки с однохроматидными хромосомами.

(1) редукционное (Первое мейотическое) деление.

профаза 1: Спирализация и уплотнение хромосом.(пахитема) Гомологичные хромосомы сближаются своими парными участками, то есть начинается процесс конъюгации.(зиготена) Хромососомные пары называются бивалентами. Каждый бивалент имеет 4 хроматиды. Гомологичные хромосомы переплетаются соответствующими участками хроматид (пахитема) (процесс кроссинговера). В результате кроссинговера происходит обмен гомологичными участками хромосом и "перемешивание" генов. Разрушается ядерная оболочка и формируется веретено деления.

(диплотена- происход фрагментация ядерн оболочки, к центромере кажд хромосомы присоед по одной микротрубочке веретена деления.;

диакинез – биваленты направлл к экватору клетки, гомологич хромосомы начин отделятся друг от друга в районе центромеры.)

метафаза 1: Завершение формирования веретена деления. В би­валентах от каждой центромеры идет только одна нить к одному из полюсов клетки. Биваленты уста­навливаются в плоскости экватора веретена деле­ния. образуя метафазную пластинку.

анафаза 1: Гомологичные хромосомы разделяются и расходят­ся к полюсам клетки. В результате этого процесса хромосомы разделяются на два гаплоидных набора, концентрирующихся у полюсов клетки. Каждый гаплоидный набор состоит из группы парных хроматид.

телофаза 1: У полюсов клетки собирается одиночный (гаплоид­ный) набор хромосом. Каждый вид хромосом пред­ставлен в этой группе одной хромосомой, состоящей из двух хроматид. Вокруг хромосом восстанавливаются ядерные оболочки.

выводы: после первого деления мейоза образу­ются группы гаплоидных наборов деойпых хромосом. Но набор ДНК является диплоидным, так как хромосомы двойные! В процессе же митоза к полюсам клетки расходятся хроматиды, которые после расхождения называются хромосомами. Между делениями мейоза удвоения ДНК не происходит!

(2) эквационное (второе мейотическое) деление:

профаза 2: В растительных клетках эта фаза отсутствует. У жи­вотных является непродолжительной. Разрушаются ядрышки и ядерные мембраны. Хроматиды укорачиваются и утолщаются. Формируется веретено де­ления.

метафаза 2: От центромеров каждой двойной хромосомы к по­люсам клетки отходят нити веретена деления. Хро­мосомы выстраиваются по экватору веретена деле­ния.

анафаза 2: Центромеры разделяются и каждая хроматида назы­вается теперь хромосомой. Дочерние хромосомы растягиваются нитями веретена деления к полюсам.

телофаза 2: Хромосомы деспирализуются и растягиваются. Ни­ти веретена деления разрушаются. Происходит уд­воение центриолей. Вокруг каждой группы хромо­сом (гаплоидной!) образуется ядерная оболочка.

выводы: Далее следуем разделение цитоплазмы. В результате мейоза из каждой диплоидной клетки образуется 4 клетки с гапло­идным набором хромосом. Благодаря мейозу поддерживает­ся постоянство хромосомного состава организмов при по­ловом размножении. Другим значением мейоза является по­вышение биологического разнообразия, которое возникает при «смешивании» участков гомологичных хромосом^ в ре­зультате кроссинговера.

 

Биологич основы регуляции клеточного цикла. циклины и циклинзависимые киназы

Ведущую роль в поочерёдной смене фаз клеточного цикла играют циклинзависимые протекиназы или Цзк. Известно несколько форм Цзк, которые обозначаются соответствующими арабскими цифрами: Цзк 1, Цзк 2, Цзк 3, Цзк 4, Цзк 5, Цзк 6 и др.

Основная функция кназ заключается в фосфорилировании и, как следствие этого, активация или инактивации опреденных белков, участвующих в соответствующих фазах клеточного цикла.

Молекулы любой циклинзависимой киназы постоянно присутствуют в клетке и сами по себе неактивны. Их активация происходит в результате связывания с ними специальных белков – циклинов. Это название указанные белки получили в связи с тем, что их содержание на протяжении клеточного цикла сменяется циклическим образом.

Особенности комбинаций циклинов и циклинзависимых киназ в составе комплексов играют ключевую роль в механизмах, определяющих поочередную смену фаз клеточного цикла.

Молекулярные эффекты действия МСФ (митоз стимул факт):

1) фосфорилирование гистона Н1 – конденсация хроматина. 2)фосфорилирование ламинов – разруш ядерной оболочки. 3) фосфорилирование тубулинов – рост микротрубочек и образ веретена деления. 4) фосфорилирование белка – фактора, стимулирующего анафазу или ФСА.

Фактор стимулирующий анафазу (ФСА) обладает способностью избирательно присоединять молекулы убиквитина – белка с небольшим молекулярным весом, к другим белковым молекулам, тем самым, как бы оставляя на них «метку». В результате такие меченые белки захватываются протеосомами, где под действием протеолитических ферментов протеосом они разрушаются.

Под влияние ФСА: 1)разруш белки удерживающие сестринские хроматиды, в результате чего последние получают возможность расходится в противоположным полюсам клетки. 2) разрушается МСФ 3) осуществляется дефосфорилирование протеинфосфатазами белков, фосфорилированных в про- и метафазу митоза. 4) восстановление ядерных оболочек 5) происходит деконденсация хромосом. 6) осуществляется цитотомия

(протекают процессы сходные с событиями про- и метафазы митоза, но как бы с обратным знаком.)

Действие комплекса циклин-Цзк заключ в: 1) инактивации комлекса циклин-Цзк предшествующей фазы клеточного цикла. 2) стимулировании процессов свойственных «своей» фазе. 3) активация комплекса циклин-Цзк следующей фазы.

Ведущую роль во всех указанных преобразованиях играет модификация белков путём фосфорилирования и дефосфорилирования их циклинзависимыми киназами.

В процессе клеточного цикла обеспечивается также постоянный контроль состояния наследственного материала, ДНК и хромосом. Ели состояние наследственного материала нарушается, то наступает либо длительная задержка клеточного цикла на текущей стадии развития для коррекции повреждений, либо она погибает в результате запуска механизмов апоптоза – программированной клеточной смерти.

 

24. Клеточный цикл. Биологический контроль состояния наследственного материала в процессе клеточного цикла на примере белка р53

Жизненный цикл

М- митоз, G1 –пресинтетический, S – синтетический, G2 – постсинтетический, Gо – период пролиферативного покоя.

Большую часть клеточного цикла занимает интерфаза – подготовка к следующему делению. в интерфазе 3 периода – G1,S,G2.

У млекопитающих длительность S – периода интерфазы составляет 6-10 часов, G2 –периода 2-5 часов, митоза 1-1,5 часа, G1-периода около 11-13 часов.

В пресинтетическом(постметатический): интенсивно проходят роцессы синтеза. образ органеллы клетки. инетенсивно проходит метаболизм. и пост клетки

В синтетическом: происходит удвоение ДНК. синтезируются гистоны. кажд хромосома превращ в 2е хроматиды.

В постсинтетический (премитотический): интенсив проход процессы синтеза, проходит деление митохондрии и хлоропластов. Активно запасается АТФ. репликация цетриолей и начало образ веретена деления.

для большинства клеток многоклет организма хар-на стадия Gо (пролиферативного покоя).

В этой стадии клетки утрачивают способность к делению и приобретают специализацию за счёт синтеза определённых белков.

2 стадии: - первичная (деление не дифференцир клеток) и – вторичная (деление ранее дифференцир клеток).

период заканчивается выходом в конец G1 периода вблизи точки рескрипции(-период когда клет цикла после которого клетка необратимо вовлекается в деление) с последующим делением клетки.

 

Центральную роль в остановке клеточного цикла играет белок р53, который служит транскрипционным фактором генов, отвечающих за остановку клеточного деления (например гена белка р21, являющегося ингибитором всех комплексов циклин – Цзк), а также генов, запускающих апоптоз.

Белок р53 синтезируется постоянно, но в обычных условиях его активность оказывается весьма низкой и лишь при нарушении при нарушениях структуры ДНК, хромосом микротрубочек, участвующих в формировании веретена деления, и других структур клетки, она значительно возрастает. Высокая активность белка р53 вызывает остановку клеточного цикла, либо гибель клетки.

активация белком р53 гена белка р21: белок р21 – связывается с комплексом циклин-Цзк и останавливает клеточный цикл.

Белок р53 активирует транскрипцию гена, кодирующего белок р 21.

 



Поделиться:


Последнее изменение этой страницы: 2016-04-21; просмотров: 1439; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.149.24.192 (0.007 с.)