![]() Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву ![]() Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Графическое определение передаточного отношенияСодержание книги
Поиск на нашем сайте
Рассмотрим звено ОА, которое вращается с угловой скоростью w вокруг неподвижной опоры О (рис. 12.10).
Для угловой скорости w звена ОА можно записать выражение
Рассмотрим зубчатую передачу, образованную парой колёс 1 и 2 (рис. 12.11). Построим в определённом масштабе схему передачи. Изобразим в произвольном масштабе вектор ` VA скорости точки А, общей для обоих колёс. Конец вектора ` VA обозначим а. Проведём прямые линии t 1 и t 2 через точку а и неподвижные точки О1 и О2. Прямые t 1 и t 2 являются линиями распределения скоростей колёс 1 и 2 передачи. Для построения картины угловых скоростей построим прямоугольную систему координат x, y c началом в точке N. На отрицательном участке оси y выберем произвольно точку К. Через точку К проведём прямые линии параллельно прямым t 1 и t 2. Точки пересечения этих прямых с осью х обозначим через 1 и 2. Учитывая, что
![]()
Из построений на рис. 12.11 следует, что
где N 1, N 2 и KN - длины отрезков на картине угловых скоростей (рис. 12.11).
Подставив выражения (12.22) в (12.21), получим формулу для определения передаточного отношения u 12 графическим методом. Рассмотрим однорядную планетарную передачу (рис. 12.12). Зубчатые колёса 1 и 3 являются центральными, колесо 2 - сателлитом, звено Н - водилом. Входным звеном служит центральное колесо 1, а выходным - водило Н.
Построим в определённом масштабе схему передачи, считая все колёса нулевыми. Тогда диаметры начальных окружностей колёс будут равны делительным диаметрам, т.е. dW1 = d1 = m × z1 , dW2 = d2 = m × z2, dW3 = d3 = m × z3. Для построения прямой распределения скоростей точек звена необходимо знать скорости двух его точек. Изобразим произвольной длины вектор ` V А скорости точки А колеса 1. Начало вектора ` V А поместим в точку А, а конец обозначим через а. Направление вектора ` V А перпендикулярно радиусу вращения ОА. Проведём прямую линию t 1 через точки 0 и a. Линия t 1 является линией распределения скоростей точек колеса 1. Скорость точки А сателлита 2 одинакова по величине и направлению скорости точки А центрального колеса 1. Колесо 3 является неподвижным, следовательно, через точку С проходит ось мгновенного вращения сателлита 2. Поэтому скорость точки С сателлита 2 равна нулю. Таким образом, известны скорости двух точек сателлита - А и С, поэтому линия t 2, проведённая через точки а и С, является прямой распределения скоростей для сателлита 2. Скорость точки В сателлита 2 изображается вектором ` V В, начало которого лежит в точке В, а конец b - на линии t 2. Скорость точки В водила Н равна скорости точки В сателлита 2. Соединив прямой линией точку b с точкой О, получим линию t Н, являющуюся линией распределения скоростей для водила Н. Для построения плана угловых скоростей звеньев планетарной передачи построим прямоугольную систему координат х, у с началом в точке N. Отложим от точки N на отрицательном участке оси у отрезок KN произвольной длины. Через точку К проведём две прямые линии под углами j 1 и j H к оси у. Точки пересечения этих прямых с осью х обозначим 1 и h соответственно. Угловые скорости колеса 1 и водила H определяются соотношениями:
Учитывая, что
получим выражение для передаточного отношения планетарной передачи
где N 1 и Nh - длины отрезков на плане угловых скоростей.
Синтез планетарной зубчатой передачи
Целью кинематического синтеза планетарной зубчатой передачи является подбор чисел зубьев колёс для воспроизведения заданного передаточного отношения. При синтезе планетарной передачи необходимо учитывать следующие ограничения. 1. Числа зубьев всех колёс должны быть целыми. 2. Сочетание чисел зубьев колёс должно обеспечивать заданное передаточное отношение с допустимой точностью. 3. При отсутствии специальных требований желательно использовать в передаче нулевые колёса. Это ограничение записывают в форме неравенства, выполнение которого обеспечивает отсутствие подреза ножки зуба: число зубьев колеса должно находиться в пределах z > zmin. Для колёс с внешними зубьями zmin = 17. Для колёс с внутренними зубьями zmin = 85 при коэффициенте высоты головки зуба h а * = 1 и zmin = 58 - при ha * = 0,8. 4. Геометрические оси центральных колёс и водила планетарной передачи должны совпадать между собой (условие сооcности). 5. При расположении сателлитов в одной плоскости соседние сателлиты не должны задевать друг друга (условие соседства). 6. Сборка нескольких сателлитов должна осуществляться без натягов при равных окружных шагах между ними (условие сборки). 7. Числа зубьев должны удовлетворять условиям отсутствия интерференции в каждом из зацеплений (во внешних и внутренних). Рассмотрим перечисленные условия синтеза для однорядной планетарной зубчатой передачи (рис. 12.12), получившей широкое применение в технике. 1. Передаточное отношение планетарной передачи
2. Условие соосности: r 1 + 2 r 2 = r 3, (12.24) где r 1, r 2 и r 3 - радиусы делительных окружностей колёс. При этом После подстановки этих выражений в (12.24) получим z 1 + 2 z 2 = z 3. (12.25) 3. Условие соседства требует, чтобы соседние сателлиты не задевали своими зубьями друг друга. Для выполнения этого условия необходимо, чтобы расстояние АВ (рис. 12.13) между осями соседних сателлитов было больше диаметра вершин зубьев сателлитов, т.е. АВ > da 2. Учитывая, что АВ = 2(r 1 + r 2) sin (180/ K), da 2 = 2(r 2 + m) и r 1 = m × z 1 / 2, r 2 = m × z 2 / 2, получим 2(r 1 + r 2) sin (180/ K) или
где К - число сателлитов.
4. Условие сборки. После установки первого сателлита повернём водило на угол j Н = 360/К. Для установки следующего сателлита необходимо, чтобы центральное колесо 1 заняло такое же положение, как и до поворота. Угол поворота колеса 1 при этом должен быть следующим: где С - произвольное целое число. Тогда Учитывая, что или
5. Допустимые числа зубьев колес при отсутствии интерференции в передаче без смешения приведены в таблице 12.1.
Таблица 12.1
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Последнее изменение этой страницы: 2021-12-15; просмотров: 116; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.144.40.102 (0.008 с.) |