Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Потенциальная энергия взаимодействияСодержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Рассмотрим систему из двух взаимодействующих частиц. Ограничимся весьма распространенным случаем, когда силы, с которыми частицы действуют друг на друга, направлены вдоль прямой соединяющей частицы, а их величина зависит только от расстояния между частицами. Если считать, что первая частица находится в начале координат (т.е. если поместить начало координат в точку, где находится первая частица), то вторую можно считать находящейся в центральном поле, созданном первой, поскольку она находится в условиях, соответствующих определению центрального поля. Силы этого поля являются консервативными, поэтому можно утверждать, что вторая частица обладает потенциальной энергией в поле созданном первой. Частицы абсолютно равноправны. Поэтому, считая вторую находящейся в начале координат, можем утверждать, что в центральном потенциальном поле, созданном второй частицей, первая обладает потенциальной энергией . В силу полной симметрии задачи относительно частиц, можно утверждать, что (3.39) Для определенности условимся считать, что в начале координат находится первая частица. Положение второй можно характеризовать радиус-вектором , проведенным к ней из начала координат. Тогда для силы, действующей на вторую частицу можно записать выражение: (3.40) где – функция расстояния до второй частицы, которая принимает: – положительные значения в случае притяжения частиц, – отрицательные значения в случае отталкивания частиц. (Вектор направлен в сторону отталкивания частиц. Поэтому при притяжении частиц знак «минус» «поворачивает» вектор к первой частице. А при отталкивании отрицательная дает при умножении на «минус» положительные значения.) Чтобы найти выражение для потенциальной энергии второй частицы в поле, созданном первой, найдем работу , совершаемую силами поля при перемещении второй частицы на . По определению потенциальной энергии, равна убыли , поскольку работа совершается за счет уменьшения потенциальной энергии: . (3.41) П определению механической работы . (3.42) Но скалярное произведение можно рассматривать как проекцию приращения на направление орта , которая равна приращению расстояния между частицами . (3.43) Следовательно . (3.44) Интегрируя соотношение (3.44), можно найти выражение для потенциальной энергии второй частицы по известной функции . Эта функция может иметь различный вид в конкретных задачах, однако наибольший практический интерес представляет случай, когда она имеет вид: (3.45) (Вспомните закон всемирного тяготения или закон Кулона – вида (3.45) охватывает и один и другой.) В этом конкретном случае (т.е. при выполнении соотношения (3.45)) . (3.46) Интегрируя (3.46), найдем: . (3.47) Как и следовало ожидать, потенциальная энергия оказалась определенной с точностью до произвольной константы интегрирования. Рассуждая аналогичным образом, но поместив начало координат в точку, где находится вторая частица, для потенциальной энергии первой частицы в поле, созданном второй, можем получить соотношение, симметричное (3.46): . (3.48) Это вполне естественный вывод: ведь, по сути дела, речь идет об одной и той же энергии – энергии взаимодействия частиц . Поскольку частицы абсолютно равноправны, то выражение для энергии взаимодействия принято записывать в симметричном виде: . (3.49) Можно доказать, что потенциальная энергия взаимодействия системы из частиц, между которыми действуют только консервативные силы, равна полусумме энергий попарных взаимодействий: . (3.49) Эта энергия зависит только от взаимного расположения частиц – – другими словами от конфигурации системы. Если конфигурация не изменяется, то остается постоянной, т.е. внутренние силы работы не совершают. Отметим, что, рассматривая сплошное (не абсолютно твердое, а упруго деформируемое) тело, как систему взаимодействующих частиц, можно рассматривать потенциальную энергию упругой деформации как энергию взаимодействия образующих тело частиц.
|
||||
Последнее изменение этой страницы: 2016-04-08; просмотров: 876; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.15.14.245 (0.006 с.) |