Наука и техника в поздней античности



Мы поможем в написании ваших работ!


Мы поможем в написании ваших работ!



Мы поможем в написании ваших работ!


ЗНАЕТЕ ЛИ ВЫ?

Наука и техника в поздней античности



 

 

Архимеду Гиерон приказал открыть закон —

Чтоб исследовать составы корон.

Ювелиры Сиракуз, к золоту имея вкус,

Из казны немалый груз увели.

Архимеду хоть бы хны – он поехал в Сандуны,

Снял рубашку, снял штаны, в ванну – плюх.

Архимед в воде лежал, и открытие искал,

И пузырики пускал в забытьи…

Тут случилась бы беда, но спасла его вода!

Не дала ему вода утонуть.

Осенило старика – заплясал он трепака

И из бани сиганул – эврика!

 

Из оперы «Архимед» физического факультета МГУ

 

Не вполне точные теоретические выводы, сделанные Аристотелем и его современниками, не помешали людям античного мира разработать основы точной механики и создать разнообразные технические приспособления. Большинство этих открытий и изобретений приходится на время, которое называют эллинистической эпохой.  Завоевания Александра Македонского способствовали широкому распространению греческой культуры и философии на окружающие страны (Египет, Персия и др.), культура которых также оказывала влияние на греческое мировоззрение. Так возникло новое культурное течение – эллинизм. 

 

Рис. 6. Архимед

 

После смерти Александра в 323 г. до н. э. интеллектуальная столица переместилась из Афин в основанный этим завоевателем город Александрию Египетскую, где один из учеников Аристотеля создал научно-учебное заведение, называвшееся Александрийским музеем. Музей стал большим культурным центром, где учёные жили за государственный счёт и имели в своём распоряжении две огромные библиотеки, насчитывающие к 48 г. до н. э. около 700 тыс. томов. Музей не только собирал, но и издавал книги, чему способствовала естественная монополия Египта на производство папируса.

 

Архимед.

 

Такие исключительно благоприятные условия привлекали в Александрию учёных со всех концов света. Фактически вся физика эллинистического периода, а значит, и вся лучшая часть античного естествознания связана с Александрийским музеем. В частности, самый выдающийся физик и механик того времени Архимед (287–212 до н. э.) учился в Александрии и всю свою жизнь сохранял связи с музеем (рис. 6). Архимед не только обосновал многие правила механики, но и создал поразительные технические приспособления, которыми и через две тысячи лет не переставали восхищаться учёные. Среди его открытий наиболее известными являются правило рычага и то, что все и всегда называли законом Архимеда. Поговорим о них подробнее.

Рычаг как самое простое механическое приспособление известен всем. Он представляет собой стержень, который может вращаться вокруг точки опоры. Участки стержня по обе стороны от этой точки называются плечами. Если к короткому плечу приложить силу, например подвесить груз, то можно будет его легко поднять, нажимая на длинное плечо. Чем больше будет длинное плечо по отношению к короткому, тем меньшую силу надо затратить для подъёма груза одной и той же массы. Но насколько меньшую? Как эта сила зависит от отношения длины плеч?[2]. Об условиях равновесия рычага говорил ещё Аристотель, но у него это условие изложено весьма неясно. Архимед выводит его из постулатов, полученных в непосредственных опытах с рычагами, и один из его выводов гласит:

 

«Соизмеримые величины уравновешиваются, если длины, на которых они подвешены, находятся в обратном отношении к тяжестям».

 

Из этого следует, что если длинное плечо будет достаточно большим, то, слегка надавливая на него, можно поднять груз любой массы. Поэтому Архимеду приписывают такое самоуверенное изречение:

 

«Дайте мне точку опоры, и я вам подыму весь мир» .

 

 

Что же касается собственно закона Архимеда, то он гласит:

 

«Тела, относительно более тяжёлые, чем жидкость, опускаются вниз до самого дна и становятся в жидкости настолько легче, сколько весит объём жидкости, равный объёму тела».

 

По распространённой легенде, закон этот был открыт так. Царь поручил Архимеду выяснить, сделана ли его корона из чистого золота или к ней подмешано серебро. Архимед думал над этой задачей до тех пор, пока ему не помог случай. Принимая ванну, он заметил, что чем больше он погружается, тем больше воды выливается из ванны. Он понял, что это даст ему ключ к разгадке, выскочил из ванны и побежал по городу с криком: «Эврика, эврика!» («Нашёл, нашёл!»). После этого открытия он опустил в сосуд с водой золотой слиток той же массы, что и корона, а потом собрал и взвесил вылившуюся воду. Потом он повторил тот же опыт со слитком серебра той же массы и нашёл, что воды вылилось больше (потому что при одинаковой массе объём серебра больше, чем объём золота). Повторив опыт с короной вместо слитков, Архимед получил результат, лежащий где-то посередине между результатами опытов со слитками, из чего заключил, что корона сделана не из чистого золота.

Архимед также сделал около сорока искуснейших и полезных изобретений. Он создал винт (он так и называется – винт Архимеда), который мог поднимать воду на высоту до четырёх метров, позволяя орошать верхние участки местности и осушать низменные. Архимед сконструировал планетарий, который впоследствии был привезён в Рим в качестве военного трофея и вызвал восхищение у римского оратора и политического деятеля Цицерона. Во время осады римским войском Сиракуз – родного города Архимеда он непрерывно изобретал всё новые боевые машины, наводившие страх на осаждающих. По легенде, после взятия Сиракуз Архимеда убил какой-то грубый римский воин в тот момент, когда философ рисовал на песке геометрические фигуры.

 

Рис. 7. Герон придумал конструкцию амфоры, «превращающей воду в вино и обратно». Одну половину такого сосуда наполняли вином, а другую – водой. Затем горлышко амфоры закрывали пробкой. В верхней части сосуда под выступающими ручками были просверлены два отверстия: одно – в «винной» части, а второе – в «водяной». Кубок подносился к кранику, расположенному внизу амфоры, жрец открывал его и наливал в кубок либо вино, либо воду, незаметно затыкая одно из отверстий пальцем

 

Герон Александрийский

 

Наверное, самым знаменитым изобретателем эллинистического мира является Герон Александрийский , хотя на самом деле про него мало что известно. Мы знаем, что он преподавал в Александрии, но не вполне ясно, в какое время (I в. до н. э. – I в. н. э.). Герон описал множество сложнейших приспособлений (рис. 7). Однако осталось неясным, какие из них изобрёл он сам, а какие заимствовал у предшественников. Среди них так называемыйэолипил   – приспособление, которое вращается под действием реактивной силы пара, вырывающегося из трубок (рис. 8), механические театры, в которых энергия сыплющегося песка или зерна с помощью системы отверстий и клапанов заставляет двигаться фигуры, изображающие сцены из жизни людей и богов, и многие другие. Поражает воображение описание устройства, благодаря которому двери храма открывались после того, как на жертвеннике разводили огонь (рис. 9).

 

Рис. 8. Эолипил

 

Таким образом, греки уже владели достаточными научными и техническими знаниями для того, чтобы оказаться на пороге той технической революции, которая произошла спустя две тысячи лет. Революция задержалась из-за того, что в эллинистическом мире людей интересовало не столько практическое использование изобретений, сколько конструирование игрушек для развлечений во время праздников и создания магических эффектов на религиозных торжествах.

 

Рис. 9. Устройство для автоматического открывания дверей в храме

 

Возможно, это связано с тем, что изобретатели на местах не имели в то время достаточного количества сырья и энергии для осуществления своих замыслов в промышленных масштабах. Так или иначе в научно-техническом развитии наступила длительная пауза.

 

Проверьте свои знания

 

1. Когда и благодаря каким историческим событиям появился эллинизм?

2. Какое изобретение Архимеда было привезено в Рим в качестве военного трофея?

3. Сформулируйте закон Архимеда.

4. Почему в Древней Греции не произошло технической революции?

5. Вспомните устройства из нашей повседневной жизни, в основе действия которых лежит принцип рычага. В каких биологических объектах используется рычаг?

6. Подготовьте сообщения о других, помимо упомянутых в параграфе, интересных и полезных изобретениях Аристотеля.

 

Рис. 10. Опыт с рычагом

 

Задания

 

Проведите опыты с рычагом. Для этого возьмите негнущуюся линейку и положите её на какую-нибудь точку опоры, например на авторучку (рис. 10). После этого поместите на один край линейки какой-либо груз. Нажимая пальцем на участки линейки, находящиеся на разных расстояниях от точки опоры, оцените усилие, которое вам потребуется для поднятия груза.

 

От натурфилософии к науке

 

Сократ – друг, но самый близкий друг – истина.

Платон

 

Хотя Платон и истина мне дороги, однако священный долг велит отдать предпочтение истине.

Аристотель

 

 

Эпоха Средневековья.

 

В период раннего Средневековья развитие естествознания практически остановилось. Хотя в практическом отношении эта эпоха сделала шаг вперёд по сравнению с Античностью. В это время стали широко использоваться железные орудия, были освоены новые культуры сельскохозяйственных растений и расширились территории посевов, разрабатывались новые конструкции мельниц и охотничьих орудий. Однако научные исследования в этот период практически никого не интересовали. Сознание человека раннего Средневековья было религиозно-мистическим, определяемым отчасти христианством, отчасти патриархальной мистикой. По сохранившимся источникам видно, что средневековый человек часто не очень отчётливо понимал, в каком мире он, собственно говоря, находится. Его наполняли переживания, связанные с всевозможными видениями, откровениями, ощущениями наказаний за грехи и т. д. Человеческая личность не могла играть в этом мире сколько-нибудь самостоятельную роль. Поведение человека обосновывалось ссылками на сверхъестественные силы, которые могли по своей воле в любой момент нарушить ход естественных событий.

Высшей из этих сил считался Бог.

 

Рис. 11. Абу Али Хусейн ибн Абдаллах ибн Сина (Авиценна)

 

Достижения античной науки в средневековой Европе практически не были известны, а культура Древнего мира категорически отвергалась как языческая и, следовательно, греховная. В это время традиции античных авторов нашли своё продолжение в странах Передней и Средней Азии. Расцвет арабской науки пришёлся на X–XII вв. Одним из наиболее знаменитых учёных этого времени был Ибн Сина, получивший известность в Европе как Авиценна (980—1037) (рис. 11). Ибн Сина внёс огромный вклад в медицину, занимался философией (развивал идеи Аристотеля) и музыкой. Выдающимися арабскими учёными того же периода были Аль-Бируни, с высокой точностью определивший плотность веществ и объяснивший действие артезианских колодцев на основе принципа сообщающихся сосудов, его современник Аль– Хайтан (Альхазен), внёсший большой вклад в развитие оптики, а также Аль-Хазини, написавший в начале XII в. «Книгу о весах мудрости», представляющую собой полный курс средневековой физики.

Военные и экономические контакты с арабской культурой открыли для европейцев философию и науку как новую сферу познания. В XI в. в Болонье (Италия) и в Париже появляются первые университеты, служащие для распространения и расширения знаний.

 

 

Рис. 12. Оксфордский университет

 

В XIII в. были основаны знаменитые Оксфордский (рис. 12) и Кембриджский (рис. 13) университеты в Англии и многие другие учебные заведения. В это же время были переведены труды Аристотеля и других философов и механиков Греции. Физика Аристотеля была официально одобрена христианской церковью, получила признание её выдающихся мыслителей и долгое время пользовалась в европейских странах непререкаемым авторитетом.

 

Рис. 13. Кембриджский университет

 

Отчасти по причине этого чрезмерного, абсолютно не критического прославления мудрости Аристотеля, отчасти из-за того, что европейское общество не одобряло самостоятельное мышление человека, особых достижений в области естествознания долгое время не было. Науку этой эпохи называют схоластикой  (от греческого слова, означающего «школьный»).

В этой науке никакая мысль не может быть принята, если она не подкреплена ссылками на общепризнанные церковные или философские авторитеты.

 

Эпоха Возрождения

 

Решающий перелом как в мышлении европейского человека в целом, так и в появлении принципиально новой науки и основанной на ней техники произошёл в XV в. с наступлением эпохи Возрождения.

 

Рис. 14. Леонардо да Винчи

 

Первым универсальным гением Возрождения был Леонардо да Винчи (1452–1519), «человек без книжного образования», чьё художественное и техническое творчество не было подавлено господством официально признанных авторитетов (рис. 14). Он писал по поводу схоластов:

 

«Хотя я и не умею так, как они, цитировать авторов, я буду цитировать гораздо более достойную вещь – опыт, наставника из наставников. Они ходят напыщенные и чванные, разряженные и разукрашенные, и не своими, а чужими трудами, а мне в моих собственных трудах отказывают, и если они меня, изобретателя, презирают, то насколько больше следует порицать их самих – не изобретателей, а лишь трубадуров и пересказчиков чужих трудов» .

 

Будучи величайшим художником, Леонардо тем не менее считал себя в большей мере «изобретателем», т. е. в современном понимании – инженером. Его называют величайшим из инженеров, которых знала история. Назовём только некоторые, наиболее известные, его изобретения. Он разработал всевозможные виды механических преобразователей движения (например, цепную передачу, до сих пор используемую в велосипедах, и применяемый сейчас в автомобилях карданный вал), подшипники, многочисленные станки для обработки металла и для текстильного производства, боевые машины для ведения войны («жесточайшего помешательства», как он её называл), различные замысловатые музыкальные инструменты. Леонардо долго и внимательно изучал механику полёта птиц и в результате пришёл к идее парашюта:

 

«Если человек имеет шатёр из полотна шириной 12 локтей и 12 локтей в высоту, то он может прыгать с любой большой высоты без вреда для себя» , а также самолёта и вертолёта (последний в его трудах описан как «винтовой аппарат, который, если его вращать с большой скоростью, ввинчивается в воздух и поднимается вверх») (рис. 15).

 

К сожалению, многие из замыслов гениального мыслителя раннего Возрождения не могли быть в то время реализованы из-за отсутствия источников необходимой энергии.

Помимо изобретения всевозможных полезных приспособлений, в круг интересов Леонардо входили и чисто научные вопросы, связанные главным образом с проблемами механики, где его можно считать предшественником Галилея и Ньютона, о которых мы будем подробно говорить в дальнейшем. Он пробовал прояснить и определить понятие силы и задолго до Ньютона догадывался о законе равенства действия и противодействия:

 

«Что касается движения воды, то же производит движение весла против неподвижной воды, что и движение воды против неподвижного весла» .

 

Леонардо также много сделал для создания экспериментального метода,  который скоро стал основой всего научного знания. Как вы узнаете из этой главы, современная наука строится на эксперименте с последующей математической обработкой его результатов. Об этом и говорил Леонардо. «Знание – дочь опыта», – утверждал он, поэтому «нужно ограничивать рассуждение опытом» , а не распространять его за пределы опыта. Но опыт сам по себе – только сырой материал, требуется ещё включить его в общее понимание мира. Так возникла идея необходимости использования в науке математических вычислений.

Идеи Леонардо можно встретить в трудах многочисленных учёных, живших сразу после него. Неизвестно, были ли они заимствованы у величайшего гения Возрождения или, как это часто бывает, «носились в воздухе», но в XVI в. уже вполне оформилось то мировоззрение, которое легло в основу современных естественных наук. Духовной предпосылкой этого мировоззрения явился полный пересмотр в период Возрождения роли человека в природе и обществе. Вместо убеждения в том, что человеком управляют сверхъестественные силы, поведение которых невозможно предсказать, стало укрепляться твёрдое мнение, что человеческая личность является центром мироздания, способным самостоятельно, без помощи церковных и философских авторитетов, познавать мир и даже управлять им. Но ведь «сколько голов, столько и умов», и если каждый имеет право на своё личное мнение, то как же создать истинную картину Мира, свободную от индивидуальных ошибок и неточностей, допускаемых отдельными наблюдателями? Для этого нужно разработать строгие методы исследований и доказательств, т. е. жёсткие правила, по которым требуется получать знания о природе. Всё, что добыто в соответствии с этими правилами, следует считать истиной, а знания, полученные другими способами, не следует принимать во внимание.

 

Рис. 15. Проекты Леонардо: А – самолет; Б – аэроплан; В – система рычагов; Г – машина

 

Возможно, при этом что-то ускользнёт от нашего внимания, но зато за полученные таким способом результаты можно будет ручаться. Так получил распространение научный метод, а вместе с ним родилась современная наука.

 

Проверьте свои знания

 

1. Что характеризовало сознание человека Средневековья?

2. Когда и с помощью кого средневековая Европа познакомилась с трудами античных философов?

3. В чём состоят основные заслуги Леонардо да Винчи?

4. Как изменился подход к научным исследованиям после эпохи Возрождения?

 

Задания

 

Воспроизведите опыты Леонардо да Винчи.

1. Возьмите лист бумаги, прикрепите к его углам грузик и наблюдайте за скоростью его падения. Затем повторите тот же опыт с половинкой и четвертушкой листа. Не забудьте проколоть в листах дырочки.

2. Поставьте на возвышение сосуд с водой и подведите к нему жёлоб таким образом, чтобы вода по нему стекала медленно. Опустите в поток воды деревянную лопатку и оцените силу, которая вам потребуется для того, чтобы удерживать её на месте. Теперь погрузите лопатку в жёлоб с неподвижной водой и гребите им, как это делают при катании на лодке. Постарайтесь гнать воду с той же скоростью, с которой она текла по жёлобу до этого, и сравните затрачиваемые в том и другом случае силы.

 

Рождение науки

 

Аристотель научил меня удовлетворять свой разум только тем, в чём убеждают меня рассуждения, а не только авторитет учителя…

Г. Галилей

 

Отсюда станет понятным на бесчисленных примерах, сколь полезна математика в заключениях, касающихся того, что предлагает нам природа, и насколько невозможна настоящая философия без помощи геометрии, в соответствии с истиной, провозглашённой Платоном.

Г. Галилей

 

 

Работы Галилео Галилея

 

На протяжении XVI в. закладывался фундамент здания современной науки, превратившегося потом в поражающий своим величием небоскрёб. К этому приложили усилия многочисленные мыслители, жившие преимущественно в Италии, так как именно из этой страны стали проникать в Европу идеи Возрождения. Там же, в итальянском городе Пизе, родился и долгое время работал великий учёный, про которого можно сказать, что именно он завершил закладку фундамента и начал возводить само здание науки. Этим человеком был Галилео Галилей (1564–1642) (рис. 16). В юные годы Галилей изучал медицину, однако затем увлёкся наблюдениями за движущимися предметами. Движение – вот что в первую очередь интересовало основателя физики. Как мы знаем, движение почти за две тысячи лет до того изучал и Аристотель, но Галилей пришёл к совершенно противоположным выводам.

 

Рис. 16. Галилео Галилей

 

По поводу ранних исследований Галилея ходит много легенд, большинство из которых нельзя достоверно подтвердить. Говорят, что ещё в ранней молодости он бросал различные предметы с наклонной Пизанской башни, определяя время их падения путём подсчёта ударов своего пульса, и таким образом заметил, что ускорение не зависит от массы предметов (рис. 17). Это был серьёзный удар по представлениям Аристотеля, принимавшимся в то время за абсолютную истину.

Рис. 17. Пизанская башня известна во всём мире. Она достигает в высоту 55 м, а надпись на ней свидетельствует о том, что она заложена в 1174 г. В 1564 г. в Пизе родился Галилео Галилей, будущий знаменитый учёный

 

 

Вспомним утверждение Аристотеля о том, что каждое тело стремится к своему месту, зависящему от соотношения входящих в это тело элементов. Опровергая это учение, Галилей замечал, что если тела будут двигаться не в воздухе, а в воде, то, например, дерево, которое считают тяжёлым, становится лёгким, потому что движется вверх. Галилей также показал, что если бы не существовало сопротивления воздуха, то все предметы падали бы с одинаковым ускорением. Собственно говоря, об этом обстоятельстве догадывались и раньше – понятно, что парашют, изобретённый Леонардо да Винчи, не уменьшает массы человека, но замедляет его падение, – но Галилей впервые высказал это положение в виде строгого принципа.

Вообще выводы Галилея часто противоречили повседневному человеческому опыту, например это касается принципа инерции. Аристотель утверждал, и это казалось всем очевидным, что скорость движения тела зависит от приложенной к нему силы. Галилей же доказывает, что движение будет происходить с постоянной скоростью, если на него не действует никакая сила. Интересно, что к этому выводу Галилей пришёл с помощью рассуждений, напоминающих доказательство от противного в математике: поскольку наклон плоскости, по которой движется тело, ускоряет его движение вниз и замедляет движение вверх, то при отсутствии этого наклона, т. е. на горизонтальной плоскости, скорость движения вообще не должна меняться.

Ясно, что закон инерции противоречит всем реально наблюдаемым явлениям, – все знают, что всякий движущийся предмет, если его не подталкивать, довольно скоро остановится. И Галилей разрешает это противоречие с помощью того же аргумента, который он использовал для объяснения падения предметов: закон соблюдался бы в точности, если бы не существовало сопротивления среды. В том, что среда имеет отношение к замедлению движения, легко убедиться. Для этого надо подтолкнуть один и тот же предмет с одной и той же силой сначала по стеклу, а потом по мягкой ткани и убедиться в том, что во втором случае он остановится гораздо быстрее. Но всё-таки что значит «если бы…»? Ведь на самом деле не может быть так, чтобы сопротивление среды (трение, как мы его теперь называем) вообще отсутствовало. И здесь мы сталкиваемся с одним из основополагающих принципов науки – абстракцией, или абстрагированием.

 

Абстракция и идеализация.

 

Абстракцией  называют мысленное выделение в каждом явлении наиболее значимых его свойств и отвлечение (абстрагирование) от тех, которые кажутся несущественными. Без абстракции невозможно никакое научное исследование, ведь в природе не бывает двух абсолютно одинаковых объектов. Нельзя изучать законы движения, если учитывать все выпуклости и зазубрины на каждом камне. Нельзя делать заключений в биологии или психологии, если учитывать тот факт, что каждое животное и тем более человек имеет свои индивидуальные особенности. Поэтому приходится абстрагироваться от многого из того, что мы наблюдаем. Высшую степень абстрагирования называют идеализацией.  В процессе исследования реально существующих предметов создаются образы мысленных объектов, которые не только не существуют, но и не могут реально существовать в природе. Такими идеализированными объектами являются, например, материальная точка, идеальный газ, геометрические фигуры и тела. Создание таких объектов является началом процесса моделирования, о котором мы будем говорить в дальнейшем, когда вместо реальных объектов используются их идеальные модели.

Может показаться, что метод абстракции и идеализации отдаляет исследование от реальности и ведёт к изучению явлений, не существующих в природе. Но вся история науки показывает, что именно правильное использование абстракции позволило открыть самые объективные явления и привело к абсолютно реальным техническим достижениям. Именно пренебрежение формой, а часто и размерами предметов, силой трения и многими другими факторами позволило Галилею, Ньютону и их последователям разработать точную механику, а впоследствии и другие разделы естествознания.

Высшей степенью абстракции Галилей считал математику, так как только она может выразить явления в идеальном виде, освобождённом от случайных погрешностей. Ни один циркуль не способен изобразить абсолютно правильную окружность, но выражение «окружность есть геометрическое место точек, равноудалённых от точки, называемой центром» и соответствующее ему уравнение характеризуют её абсолютно точно. Только с помощью математики, как полагал Галилей, можно нарисовать правильную картину Мира. Он считает, что книга природы

 

«написана на языке математики, её буквами служат треугольники, окружности и другие геометрические фигуры, без помощи которых человеку невозможно понять её речь; без них – напрасное блуждание в тёмном лабиринте ».

 

Со времени Галилея в научный обиход вошли понятия абстрагирования, эксперимента, измерения и математической обработки результатов. В следующих параграфах мы рассмотрим, в чём состоит их суть.

 

Проверьте свои знания

 

1. Что утверждает открытый Галилеем закон инерции?

2. От чего абстрагировался Галилей, формулируя закон инерции?

3. С помощью каких экспериментов Галилей доказал, что, если на тело не действует сила, оно будет двигаться с постоянной скоростью?

 

Задания

 

1. Подготовьте доклад о жизни и научной деятельности Галилео Галилея.

2. Приведите примеры абстрагирования в различных науках.

3. Если у вас в школе имеется достаточно большой сосуд и насос, позволяющий откачивать воздух из этого сосуда, поместите в сосуд предметы различной формы и массы, а затем откачайте из него воздух (рис. 18). После этого переверните сосуд и убедитесь в том, что все предметы падают одновременно.

 

Рис. 18. Опыт с сосудом, на дне которого лежат тяжёлый шарик, кусок картона и перо: А – сосуд с воздухом; Б – при переворачивании сосуда все предметы падают по-разному и достигают дна сосуда в разное время; В – из сосуда откачали воздух; Г – при переворачивании все предметы одновременно оказываются на дне сосуда

 

Наблюдение и эксперимент

 

 

О вы, счастливые науки!

Прилежны простирайте руки

И взор до самых дальних мест.

Пройдите землю, и пучину, и степи, и глубокий лес…

…Везде исследуйте всечасно,

Что есть велико и прекрасно,

Чего ещё не видел свет.

 

М. Ломоносов

 

Познание окружающего мира начинается с собирания фактов, добытых эмпирическим (от греч. empeiria – опыт) путём. Эмпирические данные могут быть получены в результате наблюдения, эксперимента и измерения. Самым простым из эмпирических методов, лежащим в основе остальных, является наблюдение. Измерение и эксперимент обязательно включают в себя наблюдение, но само наблюдение может и не сопровождаться двумя другими методами.

 

Наблюдение.

 

Научным наблюдением  называется восприятие предметов и явлений с целью их изучения (рис. 19). Поскольку главной особенностью естественных наук является их объективность, то требуется, чтобы результаты наблюдений, сделанных одним или несколькими людьми, могли быть воспроизведены другими. Следовательно, требуется сообщить о своих наблюдениях таким образом, чтобы каждый смог в соответствующих условиях повторить их и получить те же результаты. Поэтому в сообщении о наблюдении требуется обязательно указать:

• объект, т. е. какой предмет или явление наблюдали;

• субъект, т. е. кто наблюдал (с учётом особенностей его физического или психологического состояния);

• средства наблюдения, т. е. описание приборов или инструментов, если они использовались;

 

Рис.19.Наблюдение – один из самых древних научных методов

 

• условия наблюдения (какая в месте наблюдения была температура, освещённость, уровень шума, характеристика местности и т. д.);

• систему знания, в которой задают цель наблюдения и объясняют его результаты.

Если при соблюдении этих требований схожие результаты будут получены несколькими наблюдателями, они могут рассматриваться как имеющие значение для науки.

Наблюдения могут быть непосредственными и косвенными. Если, например, мы наблюдаем невооружённым глазом звёздное небо или падение камня с возвышенного места, то это будет непосредственное наблюдение. А вот элементарные частицы непосредственно наблюдать невозможно. Мы можем судить о них, только наблюдая те изменения, которые они производят в измерительных приборах. Однако между этими видами наблюдения нет резкой границы: как, например, оценить наблюдение, сделанное с помощью бинокля? Наблюдение представляет собой один из важных видов научной практики, но полученным с его помощью результатам не всегда можно безоговорочно доверять. Наблюдатель не всегда может учитывать все условия, при которых обнаруживается наблюдаемое явление, может не принимать во внимание случайные факторы, собственное вмешательство в ход наблюдаемого процесса и т. п. Поэтому более строгим научным методом, с помощью которого добываются основные естественно-научные знания, является эксперимент.

 

Эксперимент

 

Эксперимент  представляет собой исследование, проводимое по определённым правилам, принятым среди естествоиспытателей. Несоблюдение этих правил обычно приводит к тому, что полученные данные вызывают недоверие и не принимаются научным сообществом всерьёз. В этом случае говорят, что методы, использованные экспериментатором, являются некорректными, а сам эксперимент обладает недостаточной чистотой. Рассмотрим, в чём заключаются основные правила эксперимента.

Сущность эксперимента обычно состоит в том, что изучается изменение какого-либо показателя, свойства или признака под влиянием некоторого фактора. Для того чтобы выяснить роль этого фактора, исследование обычно проводят на двух группах исследуемых объектов, которые различаются только по этому фактору. Группа, где изучаемый фактор отсутствует, называется контрольной,  а та, где он присутствует, – экспериментальной.  Можно образовать несколько групп, различающихся по величине изучаемого воздействия. Допустим, исследуется влияние лекарственного средства на скорость размножения определённого вида микроорганизмов. Для этого можно взять несколько сосудов с питательной средой и поместить в каждый строго определённое количество микроорганизмов (рис. 20). Очень важно, чтобы эти сосуды не различались ни по каким признакам, кроме изучаемого: их объём, состав и количество питательного раствора, температура, при которой будет происходить размножение, и все прочие условия должны быть абсолютно одинаковы.

 

Рис. 20. Изучение влияния лекарственного препарата на скорость размножения определённого вида микроорганизмов

 

Единственное различие будет состоять в присутствии лекарственного средства. Один сосуд, тот, в котором это средство отсутствует, будем называть контрольным. В другие сосуды, экспериментальные, будем добавлять изучаемое средство в различных дозах, предположим, 1, 5 и 10 миллиграммов. По прошествии строго определённого времени, одного и того же для всех сосудов, будем брать пробы из каждого сосуда и подсчитывать определённым способом количество микроорганизмов. Если это количество окажется разным в различных сосудах, например их будет тем меньше, чем больше концентрация нашего средства, то можно будет сделать вывод о влиянии этого средства на скорость развития данного вида микробов.

Однако для уверенного утверждения о таком влиянии одного такого эксперимента будет недостаточно. Обязательным требованием к научному эксперименту является его воспроизводимость . Если при многократном повторении одного и того же эксперимента в абсолютно одинаковых условиях всегда будут получаться одинаковые результаты, то этим результатам можно будет доверять. Тогда можно быть уверенным в том, что в эксперимент не вкралась какая-либо не учтённая исследователем случайность. В этом случае исследователь имеет право сообщить о своих результатах в научной статье или на конференции.

Но для того чтобы полученные данные стали признанным научным фактом, и этого недостаточно. Так же как и при проведении наблюдений, требуется, чтобы результаты эксперимента были подтверждены другими независимыми экспериментаторами. Ведь всегда можно допустить возможность того, что первооткрыватель пусть бессознательно, но допустил какие-либо ошибки или неточности. Поэтому, публикуя результаты своих исследований, автор должен точно соблюдать те правила, о которых говорилось выше, т. е. указать условия, в которых проводились его эксперименты. После этого его коллеги смогут воспроизвести описанные опыты. В том случае, если результаты у всех окажутся одинаковыми, данные опыты могут считаться общепризнанным установленным научными фактами.

В результате принятия экспериментального метода в естественных науках, в отличие от многих гуманитарных наук, невозможны принципиально различные точки зрения на природу одних и тех же явлений. Ведь в случае расхождения мнений всегда можно провести совместный эксперимент и выяснить, какое именно мнение является правильным. Высказывать различные суждения и выдвигать новые гипотезы можно лишь по поводу тех явлений, сущность которых пока ещё не проверена достаточно точными экспериментами.

 

Проверьте свои знания

 

1. Что обязательно указывают в сообщении о наблюдении?

2. Чем отличается эксперимент от наб



Последнее изменение этой страницы: 2021-04-05; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.95.131.146 (0.065 с.)