Физиология клеточных мембран. Механизмы трансмембранного транспорта. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Физиология клеточных мембран. Механизмы трансмембранного транспорта.



Физиология клеточных мембран. Механизмы трансмембранного транспорта.

Мембранный потенциал(потенциал покоя) – трансмембранная разность потециалов, существующая между цитоплазмой и окружающей средой.(в сост покоя внутренний потенциал отрицателен по отношению к наружному(условно равен нулю) -50 до -90Мв.

Мембранно-ионная теория, согласно которой, наличие электрических потенциалов в живых клетках обусловлено неравенством концентрации ионов Na, K, Ca и Cl внутри и вне клетки с различной проницаемостью для них поверхностной мембраны.

Представим себе сосуд, разделенный на два отсека искусственной мембраной;стенки которой заряжены электроотрицательно, поэтому пропускают только катионы. В обе половины налит солевой раствор, содержащий ионы К, но их конценрация в правой половине больше чем в левой. Вследствие этого концентрационного градиента ионы К начинают диффундировать из правой половины в левую. Это приводит к тому что непроникающие анионы начинают скапливаться у мембраны правой половины сосуда. Своим отрицательным зарядои они электростатически будут удерживать ионы К у поверхности мембраны в левой половине. В результате мембрана поляризуется и между двк=умя ее поверхностями создается разность потенциалов.

Механизм проведение возбуждения по нервным волокнам. Сальтаторное проведение.

При действии раздражителя имеется разность потенциалов между наружной и внутренней поверхностями ткани (участки несущие различные заряды). Между этими участками возникает электрический ток (движение ионов Nа+). Внутри нервного волокна возникает ток от положительного полюса к отрицательному полюсу, т. е. ток направлен от возбужденного участка к невозбужденному. Этот ток выходит через невозбужденный участок и вызывает его перезарядку. На наружной поверхности нервного волокна ток идет от невозбужденного участка к возбужденному. Этот ток не изменяет состояние возбужденного участка, т. к. он находится в состоянии рефрактерности.

Доказательство наличия круговых токов: нервное волокно помещают в раствор NaCl и регистрируют скорость проведения возбуждения. Затем нервное волокно помещают в масло (повышается сопротивление) - скорость проведения уменьшается на 30 %. После этого нервное волокно оставляют на воздухе - скорость проведения возбуждения уменьшается на 50 %.

Особенности проведения возбуждения по миелиновым и безмиелиновым нервным волокнам:

1. миелиновые волокна - имеют оболочку обладающую высоким сопротивлением, электрогенные свойства только в перехватах Ранвье. Под действием раздражителя возбуждение возникает в ближайшем перехвате Ранвье. Соседний перехват в состоянии поляризации. Возникающий ток вызывает деполяризацию соседнего перехвата. В перехватах Ранвье высокая плотность Nа-каналов, поэтому в каждом следующем перехвате возникает чуть больший (по амплитуде) потенциал действия, за счет этого возбуждение распространяется без декремента и может перескакивать через несколько перехватов. Это сальтаторная теория Тасаки. Доказательство теории - в нервное волокно вводили препараты, блокирующие несколько перехватов, но проведение возбуждения регистрировалось и после этого. Это высоко надежный и выгодный способ, т. к. устраняются небольшие повреждения, увеличивается скорость проведения возбуждения, уменьшаются энергетические затраты;

2. безмиелиновые волокна - поверхность обладает электрогенными свойствами на всем протяжении. Поэтому малые круговые токи возникают на расстоянии в несколько микрометров. Возбуждение имеет вид постоянно бегущей волны.

Этот способ менее выгоден: большие затраты энергии (на работу Nа-К-насоса), меньшая скорость проведения возбуждения.

Миогенная регуляция

В скелетных мышцах с их широким диапазоном активности обменных процессов высокий исходный тонус сосудов обусловлен, главным образом, миогенной активностью сосудистой стенки и в меньшей степени — влиянием симпатических вазоконстрикторов (15-20% тонуса в покое нейрогенного происхождения). Ауторегуляция кровотока наиболее выражена при высоком исходном тонусе сосудов.

В условиях интенсивной мышечной работы сократительная активность гладких мышц сосудов снижена. Согласно гистомеханической гипотезе, сокращение мышц изменяет конфигурацию их артериол, тем самым уменьшая их продольное напряжение, что ведет к снижению спонтанной активность гладкомышечных клеток, расширению сосудов и увеличению интенсивности кровотока в работающей мышце.

Нервная регуляция

Нервная регуляция сосудов скелетных мышц осуществляется через симпатические адренергические вазоконстрикторы. В артериях скелетных мышц имеются а- и В- адренорецепторы, в венах только а-адренорецепторы. Активация а-адренорецепторов приводит к сокращению миоцитов и сужению сосудов, активация В-адренорецепторов — к расслаблению миоцитов и расширению сосудов. Сосуды скелетных мышц иннервируются также симпатическими холинергическими нервными волокнами, возбуждение которых оказывает дилататорный эффект. В покое сосуды скелетных мышц находятся под тоническим влиянием симпатических вазоконстрикторов. При каротидных депрессорных рефлексах констрикторный тонус уменьшается и расширение сосудов скелетных мышц, наряду с расширением сосудов чревной области, ведет к снижению общего периферического сопротивления. Рефлекторное уменьшение активности симпатических вазоконстрикторов имеет место в работающих мышцах (функциональный симпатолиз).

Гуморальная регуляция

Наиболее мощным фактором гуморальной регуляции тонуса сосудов являются метаболиты, накапливающиеся в работающей мышце. В межклеточной жидкости и в оттекающей от мышцы венозной крови при этом резко падает содержание кислорода, растет концентрация угольной и молочной кислоты, аденозина. Среди факторов, обеспечивающих снижение тонуса сосудов в мышце при ее работе, ведущими являются быстрое повышение внеклеточной концентрации ионов калия, гиперосмолярность, а также снижение рН тканевой жидкости.

Образующиеся в специализированных клетках серотонин, бради-кинин, гистамин оказывают сосудорасширяющее действие в скелетных мышцах. Адреналин при взаимодействии с а-адренорецепторами вызывает констрикцию, с В- адренорецепторами — дилатацию мышечных сосудов, норадреналин обладает сосудосуживающим действием через а-адренорецепторы. Ацетилхолин и АТФ приводят к выраженной дилатации сосудов скелетных мышц.

 

82. Особенности кровоснабжения головного мозга. Регуляция кровоснабжения.

Интенсивность кровотока в сосудах мозга высока — в состоянии психического и физического покоя она составляет 55-60 мл/100 г/мин, т.е. около 15% сердечного выброса. При относительно небольшой массе (2% от веса тела) мозг потребляет до 20% всего кислорода и 17% глюкозы, которые поступают в организм человека. Интенсивность потребления кислорода мозгом составляет в среднем 3-4 мл/100 г/мин. Критическая величина интенсивности суммарного мозгового кровотока, при которой начинают проявляться признаки необратимых изменений мозгового вещества в связи с недостатком кислорода, составляет около 15 мл/100 г/мин. Уже через 5- 7 с после прекращения кровообращения в мозге человек теряет сознание. При ишемии мозга, продолжающейся более 5 мин, отмечается феномен невосстановления кровотока, вследствие перекрытия микроциркуляторного русла из-за изменений эндотелия капилляров и отека глиальных клеток. В отличие от других органов мозг практически не располагает запасами кислорода.

Сосуды мозга способны путем ауторегуляторных механизмов поддерживать кровоток на относительно стабильном уровне при изменениях системного АД в пределах 60- 180 мм рт.ст. При подъеме АД выше 180 мм рт.ст. возможно резкое расширение артерий мозга, сопровождающееся нарушением функций гематоэнцефалического барьера, возникновением отека и возрастанием интенсивности мозгового кровотока. При относительном постоянстве общего мозгового кровотока локальный кровоток в различных отделах мозга не постоянен и зависит от интенсивности их функционирования. Так, при напряженной умственной работе локальный кровоток в коре головного мозга человека может возрастать в 2- 3 раза по сравнению с состоянием покоя.

В условиях герметичности и жесткости черепа общее сопротивление сосудистой системы головного мозга мало зависит от изменений давления в его артериях. Так, при повышении АД происходит расширение мозговых артерий, что ведет к повышению давления лик-вора, сжатию вен мозга и оттоку ликвора в спинальную полость. При этом сопротивление артерий падает, а вен — возрастает, так что общее сопротивление сосудистой системы мозга в целом практически не меняется.

 Миогенная регуляция кровоснабжения Головного мозга

Миогенная регуляция мозгового кровотока осуществляется за счет реакции гладких мышц артериальных сосудов мозга на изменение давления в них. Повышение АД приводит к возрастанию тонуса миоцитов и сужению артерий, снижение АД — к снижению тонуса и расширению артерий. Миогенная регуляция мозгового кровотока считается центральным звеном системы ауторегуляции кровообращения в мозге.

 Гуморальная регуляция кровоснабжения Головного мозга

Гуморальная регуляция обеспечивается прямым действием на гладкие мышцы сосудов различных вазоактивных веществ: метаболитов, гормонов, биологически активных веществ.

Мощным регулятором мозгового кровотока является уровень напряжения углекислого газа в артериальной крови и связанный с этим уровень рН спинномозговой жидкости. На каждый миллиметр изменения напряжения СО2величина мозгового кровотока изменяется примерно на 69%.

Возрастание напряжения СО2 в крови (гиперкапния) сопровождается расширением мозговых сосудов, а гипокапния — их сужением, столь значительным, что достигается порог кислородной недостаточности мозга (одышка, судороги, потеря сознания). Возрастание мозгового кровотока при гиперкапнии обеспечивает быстрое «вымывание» углекислоты и возвращение уровня напряжения СО2 и концентрации водородных ионов к исходной величине.

Напряжение 02 не является фактором градуальной регуляции общего мозгового кровотока. Лишь падение напряжения кислорода (гипоксия) до пороговой величины (около 50 мм рт.ст.) вызывает резкое возрастание общего кровотока в мозге. Поскольку при таких величинах напряжения кислорода имеет место прогрессирующее накопление в тканях мозга молочной кислоты (а значит снижение рН), конечной причиной усиления мозгового кровотока при гипоксии может быть расслабление сосудов мозга под действием снижения рН. Прямое вазодилататорное влияние недостатка кислорода на мозговые сосуды при этом не исключается. Усиление мозгового кровотока при гипоксии сохраняет величину потребления мозгом кислорода на прежнем уровне.

 Метаболическая регуляция кровоснабжения Головного мозга

Метаболическая регуляция играет существенную роль при локальных перераспределениях крови между областями мозга, имеющими разный уровень функциональной активности в каждой конкретной ситуации. Локальное повышение функциональной активности нервных клеток приводит к повышению в межклеточной среде концентрации аденозина и ионов калия, что ведет к местному расширению сосудов и усилению в них кровотока.

Учитывая, что уровень концентрации ионов калия в межклеточной среде головного мозга может меняться в течение долей секунды от момента усиления функциональной активности нейронов, описанный механизм называют быстрым контуром регуляции. Более медленный контур регуляции мозгового кровотока связан с повышением напряжения СО2 в мозговом веществе, вследствие активного потребления кислорода работающими клетками. Это вызывает локальное снижение рН в межклеточной среде и приводит к расширению сосудов активно функционирующей области мозга.

Биологически активные вещества и гормоны могут оказывать как прямое, так и опосредованное влияние на сосуды мозга. К внутрисосудистым вазоконстрикторам относятся: вазопрессин, ангиотензин, простагландины группы F, катехоламины. Сосудорасширяющий эффект оказывают: ацетилхолин, гистамин (средние и крупные артерии), брадикинин (мелкие артерии).

Вещества, способствующие изменению напряжения О2 и СО2 в крови, такие как тироксин, адреналин и другие, могут, через изменения рН влиять на тонус мозговых сосудов. Адреналин, кроме того, может вызывать повышение мозгового кровотока через усиление нейрональной активности в структурах центральной нервной системы.

Перенос СО2 кровью. Образование бикарбонатов и карбаминогемоглобина. Значение карбоангидразы.

Организм располагает несколькими механизмами переноса СО2 от тканей к легким. Часть его переносится в физически растворенном виде. Растворимость СО2 в плазме крови в 40 раз превышает растворимость в ней кислорода, тем не менее при небольшой артериовенозной разнице РСО2 (напряжение СО2 в венозной крови, притекающей к легким по легочной артерии, равно 60 гПа, а в артериальной крови – 53,3 гПа) в физически растворенном виде может быть перенесено в покое 12–15 мл СО2, что составляет 6–7% от всего количества переносимого углекислого газа.
Некоторое количество СО2 может переноситься в виде карбаминовой формы. Оказалось, что СО2 может присоединяться к гемоглобину посредством карбаминовой связи, образуя карбгемоглобин

В артериальной крови основное количество двуокиси углерода (90%) содержится в виде бикарбоната, который образуется за счет реакции углекислого газа с водой (образование Н2СО3) и последующей диссоциацией на катион водорода и анион НСО3. Эта реакция чрезвычайно быстро протекает в эритроцитах под влиянием внутриклеточного фермента карбоангидразы.
Анион НСО3 свободно проходит через клеточную мембрану и накапливается в плазме крови, образуя бикарбонат натрия.

Перенос в соединении с белком (10-20%). СО2 присоединяется к аминогруппам гемоглобина с образованием карбаминогемоглобина. Количество СО2, способное связаться с гемоглобином, зависит от количества уже связанного гемоглобином кислорода. Чем меньше кислорода связано с гемоглобином, тем больше СО2 может быть перенесено этим способом.

Перенос в виде карбоната (85%). Образующаяся в тканях углекислота проникает путем пассивной диффузии в кровеносное русло и поступает в эритроциты, где, соединясь с водой, образует угольную кислоту. Этот процесс катализируется содержащимся в эритроцитах ферментом карбоангидразой (угольной ангидразой)

Функции желчи

Желчь выполняет целый ряд важных функций.

1. Эмульгирует жиры, делая водорастворимыми жирные кислоты.
2. Способствует всасыванию триглицеридов и образованию мицелл и хиломикронов.
3. Активирует липазу.
4. Стимулирует моторику тонкого кишечника.
5. Инактивирует пепсин в двенадцатиперстной кишке.
6. Оказывает бактерицидное и бактериостатическое действие на кишечную флору.
7. Стимулирует пролиферацию и слущивание энтероцитов.
8. Усиливает гидролиз и всасывание белков и углеводов.
9. Стимулирует желчеобразование и желчевыделение.

118. Регуляция образования желчи и ее выделения в 12-перстную кишку.

Регуляция желчеобразования. Желчеобразование осуществляется непрерывно, но интенсивность его изменяется за счет регуляторных влияний. Усиливают желчеобразование акт еды, принятая пища. Рефлекторно изменяется желчеобразование при раздражении интероцепторов пищеварительного тракта, других внутренних органов и условнорефлекторном воздействии.

Парасимпатические холинергические нервные волокна (воздействия) усиливают, а симпатические адренергические — снижают желчеобразование. Имеются экспериментальные данные об усилении желчеобразования под влиянием симпатической стимуляции.

К числу гуморальных стимуляторов желчеобразования (холеретиков) относится сама желчь. Чем больше желчных кислот поступает из тонкой кишки в кровоток воротной вены (портальный кровоток) тем больше их выделяется в составе желчи, но меньше желчных кислот синтезируется гепатоцитами. Если поступление в портальный кровоток желчных кислот уменьшается, то дефицит их восполняется усилением синтеза желчных кислот в печени. Секретин усиливает секрецию желчи, выделение в ее составе воды и электролитов (гидрокарбонатов). Слабее стимулируют желчеобразование глюкагон, гастрин, ХЦК, простагландины.

Действие различных стимуляторов желчеобразования различно. Например, под влиянием секретина увеличивается в основном объем желчи, под влиянием блуждающих нервов, желчных кислот повышаются ее объем и выделение органических компонентов, высокое содержание в пище полноценных белков увеличивает выделение и концентрацию этих веществ в составе желчи. Желчеобразование усиливают многие продукты животного и растительного происхождения. Соматостатин уменьшает желчеобразование.

Желчевыделение. Движение желчи в желчевыделительном аппарате обусловлено разностью давления в его частях и в двенадцатиперстной кишке, состоянием сфинктеров внепеченочных желчных путей. В них выделяют следующие сфинктеры: в месте слияния пузырного и общего печеночного протока (сфинктер Мирисси), в шейке желчного пузыря (сфинктер Люткенса) и концевом отделе общего желчного протока и сфинктер ампулы, или Одди. Тонус мышц этих сфинктеров определяет направление движения желчи. Давление в желчевыделительном аппарате создается секреторным давлением желчеобразования и сокращениями гладких мышц протоков и желчного пузыря. Эти сокращения согласованы с тонусом сфинктеров и регулируются нервными и гуморальными механизмами. Давление в общем желчном протоке колеблется от 4 до 300 мм вод. ст., а в желчном пузыре вне пищеварения составляет 60—185 мм вод. ст., во время пищеварения за счет сокращения пузыря поднимается до 200—300 мм вод. ст., обеспечивая выход желчи в двенадцатиперстную кишку через открывающийся сфинктер Одди.

Механизмы всасывания

Для всасывания микромолекул - продуктов гидролиза питательных веществ, электролитов, лекарственных препаратов используются несколько видов транспортных механизмов.

1. Пассивный транспорт, включающий в себя диффузию, фильтрацию и осмос.
2. Облегченная диффузия.
3. Активный транспорт.

ДЫХАТЕЛЬНЫЙ КОЭФФИЦИЕНТ

отношение объёма СО2, выделяемого из организма при дыхании, к объёму поглощаемого за то же время О2; характеризует особенности газообмена и обмена веществ живых организмов. Д. к. зависит от химич. природы дыхат. субстрата, содержания СО2 и О2 в атмосфере и нек-рых др. факторов, характеризуя таким образом специфику и условия дыхания. При окислении углеводов в организме хищных животных (и свободном доступе О2) Д. к. равен 1, жиров — 0,7, белков — 0,8. У растительноядных животных он составляет ок. 0,7. У человека в норме в состоянии покоя Д. к. равен 0,85, при умеренной работе — ок. 1. При интенсивной работе и гипервентиляции лёгких Д. к. может возрастать до 2. При длит, работе, а также при голодании Д. к. постепенно снижается (примерно до 0,7). У растений Д. к. равен 1 (напр., в листьях, богатых углеводами); больше 1— при неполном окислении в условиях анаэробиоза (в семенах с твёрдой оболочкой, напр. льна) или при использовании субстрата более богатого О2, чем углеводы,— орга-нич. к-т (напр., в яблоках после зимней лёжки) и др.; меньше 1 — при окислении субстрата с меньшим относит, содержанием кислорода, чем в углеводах,— липидов или белков (напр., в прорастающих семенах пшеницы, бобовых).

Калорический эквивалент кислорода — количество энергии, освобождающееся при потреблении организмом 1 л кислорода; величина К. э. к. зависит от относительного содержания в пище жиров, белков и углеводов; используется при непрямой калориметрии.

128. Основной обмен энергии, его значение. Факторы, от которых зависит его величина.
Основной обмен (ОО) - суточные энергозатраты организма в стандартных условиях:

- Утром (потому, что являются суточные колебания уровня энергозатрат - он минимален ночью в 3-4 часа и максимальный вечером в 17-18 часов);

- В условиях физического и эмоционального покоя (мышечная работа сопровождается увеличением энергозатрат, так как на сокращение мышц необходимо тратить значительное количество энергии; в условиях эмоционального напряжения активируется симпатический отдел вегетативной нервной системы увеличивается количество катехоламинов и тироксина расщепления окисления и фосфорилирования увеличения энергозатрат)

- Лежа (чтобы не тратилась лишняя энергия на сокращение мышц на поддержание антигравитационной позы);

- При температуре комфорта (при этом поддержание постоянства температуры тела не требует напряжения процессов теплоотдачи и теплопродукции, то на эти процессы не тратится энергия);

- Натощак (через 10-12 часов после приема пищи, чтобы не проявлялась специфически динамическое действие жратвы).

Специфически-динамическое действие пищи - увеличение энергозатрат, что связано с приемом пищи. После приема углеводной и жировой пищи, специфически динамическое действие пищи составляет 10-15%, а белковой - 30%. Увеличение энергозатрат связано с активацией гладких мышц ЖКТ и выделения секретов (пищеварительных секретов), с процессами всасывания - все эти процессы протекают с использованием энергии АТФ. Аминокисноты после всасывания в печени дезаминуються и пераминуються, что также требует энергозатрат, поэтому специфически-динамическое действие белковой пищи выше, чем углеводородного и жировой.

Соответственно, определяя ОО создают условия, при которых энергия окисления питательных веществ витрачаеть на поддержание нормальной жизнедеятельности организма в состоянии бодрствования, но при условии, что энергозатраты организма минимальны. Энергия окисления питательных веществ при этом расходуется так:

- 50% ее превращается в первичное тепло и выделяется из организма, 50% идет на синтез АТФ;

Расходы АТФ следующие:

процессы биосинтеза - 23%;

сокращения мышц (поддержание тонуса скелетных мышц, сокращения миокарда и дыхательных мышц) - 15%;

работа механизмов активного транспорта веществ - 12%.

Факторы от которых зависит величина ОО:

Пол.

Масса тела.

Рост.

Возраст.

Особенности процессов обмена веществ в организме, а именно процессов аэробного окислительного фосфорилирования, степень сопряжения окисления и фосфорилирования в дыхательной цепи. Это в свою очередь, определяется влиянием на процессы окислительного фосфорилирования регуляторных механизмов - катехоламинов и тироксина.

Оценивают величину ОО, сравнивая ее со стандартным обменом - надлежащая (нормальная) величина для данного человека. Точнее величину стандартного обмена определяют по таблицам Хариса и Бенедикта. При этом учитывают пол, массу, рост и возраст. Допустимые отклонения ОО от должной величины на 15%. Если ОО выше или ниже должной величины более чем на 15%, это свидетельствует о нарушении нормального протекания в организме окислительного фосфорилирования, т.е. нарушение механизмов регуляции этих процессов.

129. Энергетический баланс организма. Регуляция. Калорическая ценность питательных веществ. Требования к соотношению питательных веществ в пищевых рационах.
Энергетический обмен присущ каждому живому организму. В вашем теле идет постоянный и непрерывный обмен веществ и энергии. При этом богатые питательными веществами продукты усваиваются и химически преобразуются, а конечные продукты их утилизации (низкоэнергетические) выделяются из организма. Высвобождающаяся энергия используется для поддержания жизнедеятельности клеток организма и для обеспечения его работы (сокращение мышц, работа сердца, функционирование внутренних органов).

Единицей измерения процесса энергетического обмена является калория. Одна калория равняется такому количеству энергии, которое необходимо для нагревания на 1 °С одного миллилитра воды. Это очень маленькая величина. Поэтому энергобаланс организма измеряют в «больших» калориях - килокалориях (1 килокалория равна 1000 калорий и обозначается ккал). В единицах Международной системы СИ для определения количества тепловой энергии используется джоуль (Дж). 1 кал =4,19 Дж, 1 ккал -4,19 кДж.
Сколько энергии необходимо человеку для нормальной жизнедеятельности в течение суток? Ответ на данный вопрос поможет определиться в причинах ожирения.

Необходимо знать, какие энергозатраты наиболее эффективны для сжигания лишнего жира и как эти знания можно использовать для успешного похудения. Наиболее частая величина, рассчитанная для абстрактного человека, имеющего склонность к полноте или избыточный вес, равняется 2200 ккал. Более точную цифру можно получить при умножении вашего нормального веса в кг на 33 ккал (для мужчин) или на 30 ккал (для женщин). Это упрощенный вариант, который широко используется при расчете рационов питания.

Основной обмен.
Основной обмен - это минимальная величина энергии, необходимая для поддержания жизни организма, находящегося в состоянии покоя (утром, лежа, натощак, в условиях температурного комфорта).

Многочисленные исследования основного обмена позволили установить, что для мужчин норма основного обмена составляет 1 ккал на 1 кг массы тела в час, для женщин (имеющих меньшую массу мышечной ткани) - 0,9 ккал на 1 кг массы тела в 1 час. Произведем примерный расчет:
О = М х 24 х П

где О - суточный основной обмен веществ в ккал;
24 - количество часов в сутки;
П - интенсивность часового основного обмена веществ в ккал на килограмм;
М - нормальная масса тела в килограммах.
Например: у мужчины с нормальной массой тела 70 кг
О = 70 х 24 х 1 =70х24= 1680 ккал в сутки.

Таким образом, приблизительная величина нормального суточного основного обмена для мужчины с нормальной массой тела 70 кг равна 1700 ккал. Аналогичный расчет этого показателя для женщины с нормальной массой 70 кг составляет 1500 ккал. Подобное различие обусловлено, в основном, тем, что у женщин мышечная масса меньше.

Питательные вещества, содержащиеся в разных кормах, необходимы для поддержания жизни животных.

Существует 6 главных групп питательных веществ, 3 из которых обеспечивают организм энергией - это белки, жиры и углеводы. Другие питательные вещества - витамины, минеральные вещества и вода - являются не энергетическими веществами.

В организме белки, жиры и углеводы расщепляются с образованием энергии. Количество энергии, высвобождающейся при этом из 1г вещества, называется калорической ценностью. Эта величина измеряется в килокалориях. Протеин и углеводы образуют при расщеплении примерно 4 ккал/г вещества, а жиры - 9 ккал/г.

Однако, все эти питательные вещества выполняют не только энергетическую, но также и пластическую функцию, т.е. используются для построения структур организма и синтеза секретов.

Белки

Белки представляют собой вещества, состоящие из аминокислот. У животных большая часть белков используется для пластического обмена, т.е. для построения и обновления биологических структур (мышц, ферментов, белков крови и т.д.).

Количество протеина, требуемого животному, зависит от вида и возраста животного и от качества протеина. В состав пищи собак обязательно должны входить белки, содержащие так называемые незаменимые аминокислоты. Все животные нуждаются во всех 23 аминокислотах, но многие аминокислоты могут синтезироваться в организме животных. Собакам требуется 10 незаменимых аминокислот, которые обязательно должны поступать с кормом.

Незаменимыми аминокислотами для собак являются: аргинин, гистидин, изолейцин, лейцин, лизин, метионин, фенилаланин, треонин, триптофан, валин.

Качество протеина оценивается по его биологической ценности. Животные белки являются более полноценными по сравнению с растительными, т.к. содержат много незаменимых аминокислот. Однако, комбинируя в правильной пропорции растительные и животные протеины, можно значительно повысить их биологическую полноценность. Например, соевая мука является самым качественным источником растительного протеина.

Наиболее отчётливым признаком дефицита белка является ухудшение роста у молодых животных, снижение веса и продуктивности у взрослых животных. Рост шерсти ухудшается, линька затягивается, появляются участки выпадения волос с грубой, шершавой кожей.

Однако, надо помнить, что излишнее потребление собаками белков в составе корма, может способствовать развитию у них мочекаменной и почечных заболеваний. Поэтому существует оптимальный уровень протеина в составе кормов, зависящий от возраста, физической активности и других физиологических особенностей животных.

Углеводы

Углеводы оказывают значительное влияние на пищеварительную функцию. Содержатся в основном в различных злаковых растениях. Подразделяются на растворимые и нерастворимые. Растворимые углеводы занимают самый большой процент в составе кормов. Избыточное количество углеводов в рационе может накапливаться в организме в виде гликогена или жира и способствует ожирению.

К нерастворимым углеводам относятся различные пищевые волокна: целлюлоза, гемицеллюлоза и т.д. Они оказывают большое влияние на транспортную функцию кишечника и на усвояемость различных питательных веществ. Потребность клетчатки в кормах для собак в 2 раза выше, чем у человека.

Жиры

В организме выполняют в основном энергетическую функцию. Кроме того, они необходимы для всасывания и хранения в организме жирорастворимых витаминов А, Д, Е, К,; повышают вкусовые качества кормов и являются источником незаменимых жирных кислот.

Различают насыщенные и ненасыщенные жирные кислоты. Некоторые ненасыщенные жирные кислоты не синтезируются в организме и должны поступать обязательно с кормом. Это незаменимые жирные кислоты. Собаки нуждаются в поступлении с кормами 2х незаменимых жирных кислот: линолевой и арахидоновой, которые должны составлять не менее 1% от сухих веществ корма.

Много незаменимых жирных кислот содержится в растительных маслах, курином и рыбьем жире.

Дефицит незаменимых жирных кислот может приводить к повреждению кожного и шерстного покрова. Жиры подразделяются на животные и растительные. В растительных жирах содержится повышенное количество ненасыщенных жирных кислот.

Однако, когда животные потребляют чрезмерное количество жира, может развиваться не только ожирение, но и различные заболевания печени, поджелудочной железы и желудочно-кишечного тракта собак.

Витамины

Витамины играют важнейшую роль в биохимических реакциях организма, выполняют роль ферментов и способствуют активации ферментов.

Витамины содержатся как в растительной, так и в животной пище.

Витамины подразделяются на жирорастворимые (А,Д,Е,К) и воднорастворимые (вит.С и витамины группы В).

Воднорастворимые витамины не способны длительное время сохраняться в организме, в то время как жирорастворимые накапливаются в организме в жировой ткани, печени и т.д. Чрезмерное их потребление называется гипервитаминозом, а недостаток - гиповитаминозом.

Гипервитаминозы у собак встречаются гораздо чаще, чем гиповитаминозы. Включение витаминных добавок в качественные коммерческие корма делает необоснованным их дополнительное скармливание, так как может вести к проявлению токсических эффектов и гипервитаминозам, из-за трудности правильного дозирования. Как недостаток, так и избыток определенных витаминов может вызывать различные заболевания у животных, в том числе и собак. Поэтому все корма для них должны быть полностью сбалансированы по всем витаминам.

Вода

Вода является очень важным элементом питания. Вода составляет более 70% массы тела животных. Потеря организмом 15% воды приводит к смерти. Животные имеют два основных источника воды: метаболическая вода - образуется в результате окисления в организме белков, жиров и углеводов, и вода, поступаемая с кормом и питьем.

Когда количество воды, принимаемое с кормами, увеличивается, животное меньше пьет. Общее количество воды, требуемое собаке, эквивалентно требованиям в энергии в ккал/день.

При использовании обычных сухих кормов собаки обычно потребляют 1,5-2 мл воды на 1 г сухого корма. В консервах на воду обычно приходится около 75%, поэтому при кормлении консервами собаки пьют воды меньше.

Качество воды определяется количеством растворенных в ней веществ и жесткостью. Вода пригодная для человека, подходит и для домашних животных. Жесткая вода, содержащая большое количество магния, может являться причиной мочекаменной болезни.

Классификация нефронов

В зависимости от места расположения принято выделять три основных типа нефронов: кортикальные нефроны составляют примерно 85% от количества всех структурных единиц в почке. Как правило, они расположены во внешней коре почки, о чем, собственно, и свидетельствует их название. Строение нефрона этого типа немного отличается — петля Генле здесь небольшая; юкстамедуллярные нефроны — такие структуры находятся как раз между мозговым и корковым слоем, имеют длинные петли Генле, которые глубоко проникают в мозговой слой, иногда даже достигая пирамид; субкапсулярные нефроны — структуры, которые расположены непосредственно под капсулой

Содержание воды в организме. Водный баланс. Потребность в воде в зависимости от характера питания и функции почек. Особенности состава межклеточной (интерстициальной) и внутриклеточной жидкостей.

Человек примерно на 65% состоит из воды. С возрастом, содержание воды в организмеуменьшается. Эмбрион состоит из воды на 97%, а у взрослого человека – около 60% воды.

В здоровом организме взрослого человека наблюдается состояние водного равновесия, или водного баланса. Оно заключается в том, что количество воды, потребляемое человеком, равно количеству воды, выводимой из организма. Водный обмен является важной составной частью общего обмена веществ живых организмов, в том числе и человека. Водный обмен включает процессы всасывания воды, которая поступает в желудок при питье и с пищевыми продуктами, распределения ее в организме, выделения через почки, мочевыводящие пути, легкие, кожу и кишечник.

Следует отметить, что вода также образуется в организме вследствие окисления жиров, углеводов и белков, принятых с пищей. Такую воду называют метаболической.

Общий объем воды, потребляемый человеком в сутки при питье и с пищей, составляет 2-2,5 л. Благодаря водному балансу столько же воды выводится из организма. Через почки и мочевыводящие пути удаляется около 50-60% воды. При потере организмом человека 6-8 % влаги сверх обычной нормы повышается температура тела, краснеет кожа, учащается сердцебиение и дыхание, появляется мышечная слабость и головокружение, начинается головная боль. Потеря 10% воды может привести к необратимым изменениям в организме, а потеря 15-20% приводит к смерти, поскольку кровь настолько густеет, что с ее перекачкой не справляется сердце. В сутки сердце приходится перекачивать около 10000 л крови.

Различные ткани организма содержат различное количество воды. Самая богатая водой ткань – стекловидное тело глаза, содержащее 99% воды, самая бедная - эмаль зуба, в ней воды всего лишь 0,2 %. Много воды содержится в веществе мозга.

Потребность организма в воде зависит от характера питания. При питании преимущественно углеводной, жировой пищей и при небольшом поступлении в организм NaCl эти потребности меньше. Пища, богатая белками, а также повышенный прием соли, обусловливают большую потребность в воде, которая необходима для экскреции с большим объемом мочи осмотически активных веществ: мочевины и минеральных ионов.

Недостаточное поступление в организм воды или ее избыточная потеря приводят к дегидратации. Это сопровождается сгущением крови, ухудшени



Поделиться:


Последнее изменение этой страницы: 2021-04-04; просмотров: 119; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.145.201.47 (0.103 с.)