Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Регуляторные функции гормонов клеток, сочетающих выработку гормонов и неэндокринные функцииСодержание книги
Поиск на нашем сайте
6.8.1. Регуляторные функции гормонов плаценты Плацента тесно анатомически и функционально связана с организмами матери и плода, поэтому принято говорить о комплексе «мать—плацента- плод», или «фетоплацентаэном комплексе». Синтез в плаценте эстриола происходит не только из эстрадиола матери, но и из дегидроэпиандростерона, образуемого надпочечниками плода. Поэтому по экскреции с мочой матери эстриола можно судить о жизнеспособности плода. В плаценте образуется прогестерон, действующий преимущественно на мускулатуру матки. С плацентарным прогестероном, например, связан временной интервал между рождениями пле дов при двойне. Основная часть гормон эв плаценты у человека по своим свойствам и даже строению напоминает гипофизарные го тадотропин и пролактин. В наибольших количествах при беременности плацентой продуцируется хорионический гонадотропин, оказывающий регул 1торные эффекты не только на процессы дифференцировки и развития п. ода, но и на метаболизм в организме матери. Гормон обеспечивает в орг шизме матери задержку солей и воды, необходимых для растущего плоде, стимулирует секрецию вазопрессина, активирует механизмы иммунитет; у матери. 6.8.2. Регуляторные функции гормонов п имуса Тимус (вилочковая железа) является центральным органом иммунитета, обеспечивающим продукцию специфических Т-лимфоцитов. Тимоциты секретируют в кровь гормональные факторь, оказывающие не только влияние на дифференцировку Т-клеток, но и вызывающие ряд общих регуляторных эффектов в организме. Основные эффекты гормонов тимуса (тимозина, тимопоэтина, тимулина) описаны < главе 8 «Иммунная система». Гормоны тимуса влияют на процессы синтеза клеточных рецепторов к медиаторам и гормонам, стимулируют разруше лие ацетилхолина в нервно- мышечных синапсах, регулируют состояние угг еводного и белкового обмена, а также обмена кальция, функции щитовидной и половых желез, модулируют эффекты глюкокортикоидов, тироксин i (антагонизм) и соматотропина (синергизм). В целом вилочковая железе рассматривается как орган интеграции иммунной и эндокринной систем с рганизма. 6.8.3. Регуляторные функции гормонов п)чек В почках отсутствует специализированная эндокринная ткань, однако ряд клеток обладает способностью к синтезу и сек эеции многих биологически активных веществ, обладающих всеми свойствами классических гормонов. Установленными гормонами почек являются: 1) кальцитриол — третий кальцийрегулирующий гормон, 2) ренин — на1 альное звено ренин-ангио- тензин-альдостероновой системы, 3) эритропоэтин.
6.8.3.1. Синтез, секреция и физиологические эффекты кальцитриола Кальцитриол является активным метаболитом витамина D3 и в отличие от двух других кальцийрегулирующих гормонов - паратирина и кальцитонина—имеет стероидную природу. Синтез каль щтриола происходит в три этапа (рис. 6.24). Первый этап протекает в кож?, где под влиянием ультрафиолетовых лучей из провитамина образуется штамин D3 или холекалъци- ферол. Второй — связан с печенью, куда холека льциферол транспортируется кровью и где в эндоплазматическом ретикул 'ме гепатоцитов происходит его гидроксилирование по 25-му атому углерод i с образованием 25(OH)D3. Этот метаболит поступает в кровь и циркулирует в связи с альфа-глобулй- ном. Его физиологические концентрации не влияют на обмен кальция. Третий этап осуществляется в почках, где в мттохондриях клеток проксимальных канальцев происходит второе гидроксилирование и образуются два соединения: 1,25-(OH)2-D и 24,25-(OH)2-D. Первое — является наиболее активной формой витамина D3, обладает мощным регуляторным влиянием на обмен кальция в организме и называется кальцитриолом. Образование в почках этого гормона регулируется паратирином, который стимулирует гидроксилирование по первому атому углерода. Таким же эффектом обладает и гипокальциемия. При избытке кальция в крови гидрокси- Инсоляция
1,25 (ЭН)2 О3или кальцитриол 24, 25 (OH)2D3 Рис. 6.24. Схема образования кальцитриола или активной формы витамина D3.
Под воздействием ультрафиолетовы к лучей в коже из холестерина образуется витамин D3; поступая с кровью в печень, он подвс эгается первому гидроксилированию по 25-му атому углерода, затем из печени с кровью noi адает в почки, где подвергается второму гидроксилированию по 1-му атому углерода, что и i едет к образованию дважды гидроксилированного витамина или кальцитриола. Рис. 6.25. Основные эффекты f альцитриола.
Под влиянием паратирина почка се <ретирует кальцитриол, основные эффекты которого (жирные стрелки) заключаются в стим} пяции всасывания в кишечнике в кровь ионов кальция и фосфата и усилении их захвата кост ной тканью. Эффекты кальцитриола на почку (стимуляция реабсорбции кальция и фосфора) в сражены слабее.
Рис. 6.26. Эффекты трех кальцийрегулирующих горм >нов на органы-мишени. В почке паратирин и кальцитриол активируют реабсорбции кальция, а кальцитонин ее угнетает. И паратирин, и кальцитонин подавляют реабсорбцию < юсфата. В кишечнике кальцитриол и паратирин активируют всасывание кальция и фосфата Кальцитонин и кальцитриол способствуют отложению кальция в костях, а паратирин актп шрует резорбцию кости и выход кальция в кровь. лирование происходит по 24-му атому углерода и синтезируется второе соединение — 24,25-(OH)2-D, которое обладает си >собностью угнетать секрецию паратирина по принципу обратной связи. Инактивация кальцитриола происходит в печени. Основной эффект кальцитриола (рис. 6.25) заключается в активации всасывания кальция в кишечнике. Гормон стих улирует все три этапа всасывания: захват ворсинчатой поверхностью клетки, внутриклеточный транспорт, выброс кальция через базолатеральн 'Ю мембрану во внеклеточную среду. Действие кальцитриола на эпителиальные клетки кишечника состоит в индуцировании синтеза энтероцитаии специальных кальций- связывающих и транспортирующих белков — к алъбайндинов, Кальцитриол повышает в кишечнике и всасывание фосфато и Почечные эффекты гормона заключаются в стимуляции реабсорбции оосфата и кальция канальцевым эпителием. Эффекты кальцитриола на костную ткань связаны с прямой стимуляцией остеобластов и обеспечением костной ткани усиленно всасывающимся в кишечнике кальцием, что активирует рост и минерализацию кости. Эффекты кальцитриола, как и зсех стероидных гормонов, делятся на геномные и негеномные. Геномные эффекты обусловливают синтез кальбайндинов, активирование остеобла< тов и синтеза костной ткани. Увеличение транспорта кальция внутрь клегок, например в скелетных и сердечной мышцах, в остеобластах, энтероцгтах, гепатоцитах и клетках околощитовидных желез, происходит быстро и обусловлено негеномным действием гормона. Под влиянием гормонрецепторного мембранного комплекса в клетках происх< щит образование вторичного посредника диацил- глицерола и активация протеинкиназы С. Кальцитриол меняет в клетке и уровень цАМФ и цГМФ, что ведет к модификации геномного эффекта. Наличие специфических рецепторов к гормону у многих клеток тканей (в молочной железе, эндокринных железах, нервной системе), способность кальцитриола активиров; ть транспорт кальция в большинстве из них свидетельствуют о широком спектре эффектов этого гормона. Участие трех кальцийрегулирующих гормонов в гомеостазисе кальция и фосфора показано на рис. 6.26. Недостаточность кальцитриола проявляется в виде рахита, т. е. нарушения созревания и кальцификации хрящей и кости у детей, либо остеомаляции, т. е. падения минер ишзации костей после завершения роста скелета. При этом сдвиги уровня кальция в крови и клетках обусловливают угнетение нейромышечной возбудимости и мышечную слабость. 6.8.3.2. Образование ренина и основные функции ренин-ангиотензи н-алъдостероновой системы
Ренин образуется в виде г роренина и секретируется в юкстагломерулярном аппарате (ЮГА) (от латинских слов juxta — около, glomerulus — клубочек) почек миоэпителиоидны ии клетками приносящей артериолы клубочка, получившими название юкстагломерулярных (ЮГК). Структура ЮГА приведена на рис. 6.27. В ЮГА кроме ЮГК также входит прилегающая к приносящим артериолам час ь дистального канальца нефрона, многослойный эпителий которого образ} ет здесь плотное пятно — macula densa. Секреция ренина в ЮГК регулируется четырьмя основными влияниями. Во-первых, величиной давления крови в приносящей артериоле, т. е. степенью ее растяжения. Снижение растяжения активирует, а увеличение — подавляет секрецию ренина. Во-втоэых, регуляция секреции ренина зависит от концентрации натрия в моче дистального канальца, которая воспринимается macula densa — своеобразным Na-рецептором. Чем больше натрия оказывается в моче дистального канальца, тем выше уровень секреции ренина. В-третьих, секреция ренина регулируется симпатическими нервами, ветви которых заканчиваются на ЮГК, медиатор норадреналин через бета-адренорецепторы стимулирует секрецию ренина. В-четвертых, регуляция секреции ренина осуществляется по механизму отрицательной обратной связи, включаемой уровнем I крови других компонентов системы — ангиотензина и альдостерона, а т юсе их эффектами — содержанием в крови натрия, калия, артериальным давлением, концентрацией простагландинов в почке, образующихся под влиянием ангиотензина. Кроме почек образование ренина происходит в эндотелии кровеносных сосудов многих тканей, м гокарде, головном мозге, слюнных железах, клубочковой зоне коры надпочечников. Секретированный в кр >вь ренин вызывает расщепление альфа-глобули- на плазмы крови — ангиотензиногена, образующегося в печени. При этом в крови образуется (рис. 6.'.’.8) малоактивный декапептид ангиотензин-1, который в сосудах почек, легких и других тканей подвергается действию превращающего фермента (карбоксикатепсин, кининаза-2), отщепляющего от ангиотензина-1 две аминокислоты. Образующийся октапептид ангиотензин-11 обладает большим числом различных физиологических эффектов, в том числе стимуляцией К1убочковой зоны коры надпочечников, секрети- импатическая активация I —► ЮГК —Macula —NaCI —— densa Ренин Ангиотензиноген 1 2 3 4 5 6 7 8 < 10 V11 12 13 14 Asp-Arg-Val-Tyr-lle-His-Pro-Phe-Hs-Leu-Leu-Val-Tyr-Ser-R Ангиотензин-I 1 23 4567 8 9 10
Asp-Arg-VakTyr-lle-His-Pro-Phethbs-Leu I— Дипептидкарбоксилаза (ПФ) Ангиотензин-Ц 1 234567 8 Asp-Arg-Val-Tyr-lle-His-Pro-Phe Рис. 6.28. Активация секреции ренина и образование в крови ангиотензина-II. Показаны три вида стимулов для секреции ренина юкст; гломерулярными клетками почек: снижение АД в приносящей артериоле клубочка, повыи ение симпатической активности, влияния macula densa, вызванные сдвигами уровня натрия. Тод влиянием фермента ренина от молекулы белка ангиотензиногена отщепляется декапеп’ид— ангиотензин-I. Этот пептид подвергается воздействию превращающегося фермента (ПФ) дипептидкарбоксилазы клеток эндотелия сосудов легких, почек и др., отщепляющей две инокислоты. Образующийся октапептид является ангиотензином-П, • вызывает сужение артериальных сосудов, • активирует симпатиче* кую нервную систему как на уровне центров, так и способствуя сип гезу и освобождению норадреналина в синапсах, • повышает сократимое! ь миокарда, • увеличивает реабсорбтию натрия и ослабляет клубочковую фильтрацию в почках, • способствует формиро;анию чувства жажды и питьевого поведения. Таким образом, ренин-а!гиотензин-альдостероновая система участвует в регуляции системного и почечного кровообращения, объема циркулирующей крови, водно-солев зго обмена и поведения. 6.8.4. Регуляторные эфректы гормонов сердца Миоцитами предсердий (преимущественно правого) образуется пептидный гормон с установленной химической структурой, получивший название предсердный натрийуретический гормон, или атриопептид. Гормон накапливается в специфических i ранулах саркоплазмы миоцитов и секретируется в кровь под влиянием гида регуляторных стимулов: растяжения предсердий объемом крови, урозня натрия в крови, эффектов блуждающего и симпатических нервов, содержания в крови вазопрессина. Физиологические эффе] гы атриопептида многообразны, так как во многих органах и тканях обнаружены специфические для него мембранные рецепторы (рис. 6.29). Сосудистые эффекты гормона состоят в расслаблении гладких мышц с юудов и вазодилатации (через цАМФ), снижении артериального давления. Кроме того, гормон повышает проницаемость гистогематических барьеров и увеличивает транспорт воды из крови в тканевую жидкость.
Почечные эффекты атриопептида включают: 1) повышение экскреции натрия (до 90 раз) и хлора (до 50 раз) в связи с подавлением их реабсорбции в канальцах. Гормон — в 1000 раз более эффективный натрийуретик, чем фуросемид; 2) выраженное диуретическое действие за счет увеличения клубочковой фильтрации и подавления реабсорбции воды; 3) подавление секреции ренина, ингибирование эффектов ангиотензина-П и альдостерона, т. е. гормон является полным антагонистом РААС.
Атриопептид, кроме того, расслабляет гладкую мускулатуру кишечника, уменьшает величину внутриглазного давления, объема и давления ликвора в желудочках мозга. Близкий по натрийуретическому эффекту гормон выявляется и в ткани головного мозга. Помимо атриопептида в предсердиях образуются атриопептины, повышающие артериальное давление и обладающие антидиуретическим эффектом. Атриопептины участвуют в регуляции питьевого поведения, солевого аппетита и жажды. В малых количествах в сердце образуются соматостатин, ангиотензин-II и релаксин, обладающие хронотропным влиянием на миокард. 6.8.5. Регуляторная функция гормонов сосудистого эндотелия Клетки сосудистого эндотелия синтезируют и выделяют через апикальную и базальную мембраны три группы гормонов: сосудосуживающие (эндоте- лины, тромбоксаны), сосудорасширяющие (оксид азота, гиперполяризую- щий фактор, простагландины) и факторы адгезии и агрегации клеточных элементов. Эндотелины (ЭТ) являются крупными полипептидами (21 аминокислота), образуются путем частичного гидролиза молекулы предшественника или «большого эндотелина», состоящей из 38 аминокислот, под влиянием связанного с мембраной клетки и находящегося в цитоплазматических везикулах эндотелинпревращающего фермента. Этот фермент локализован в эндотелии сосудов легких, сердца, почек, плаценты, поджелудолчной железы, надпочечников, головного мозга и даже в сосудистых гладких мышцах. Наличие двух форм эндотелинпревращающего фермента (мембраносвязанной и внутриклеточной) определяет и два места образования эндоте- линов — в цитоплазме и на поверхности клеточной мембраны. Эндотелин- превращающий фермент ведет не только к образованию молекул эидоте- лина, но способен вызывать гидролиз и инактивацию на поверхности эн- дотелиоцитов ряда регуляторных пептидов и гормонов (инсулина, брадикинина, нейротензина и др.). Активация эндотелинпревращающего фермента происходит под влиянием цитокинов. Эффекты эндотелинов обусловлены их взаимодействием со специфическими мембранными рецепторами двух типов — ЭТ-А и ЭТ-В. Следствием специфического связывания эндотелина с рецептором является активация систем вторичных посредников (фосфолипаза С, ИФЗ, диацилглицерол, цГМФ и цАМФ, фосфолипазы D и А2). Различают прямые и опосредованные сосудистые эффекты эндотелинов. Прямые эффекты заключаются в действии на гладкие мышцы сосудов. Связывание эндотелина с рецепторами гладких мышц сосудов вызывает их сокращение и вазоконстрикцию (через образование ИФЗ и повышение внутриклеточного Са2+), а также стимуляцию митогенеза и пролиферации клеток (^ерез активацию тиро- зинкиназы и фосфорилирование тирозина). Взаимодействие эндотелинов с рецепторами клеток эндотелия вызывает реализацию опосредованных эффектов, в виде высвобождения из эндотелия вазоактивных факторов, приводящих к расширению сосудов (NO, гиперполяризующий фактор, простагландины). Кроме сосудистых эффектов эндотелины изменяют секрецию гормонов гипофиза и надпочечников, стимулируют секрецию атриопептида миокардом, угнетают эффекты вазопрессина в почках, способствуя диурезу и натрийурезу, увеличивают реакции сердца на симпатические стимулы. Среди сосудорасширяющих гормонов эндотелия основное место по выраженности и распространенности эффекта занимает оксид азота (NO), постоянно образующийся из L-аргинина под влиянием фермента NO-син- тетазы. Одним из стимулов, активирующих фермент и образование оксида азота, является механическое растяжение стенки сосудов. Активация фермента и синтез оксида азота происходят при действии на мембранные рецепторы эндотелиоцитов ацетилхолина, адреномедуллина, гистамина, брадикинина, АТФ, а также в результате повышения в клетке эндотелия концентрации ионизированного Са2+. NO-синтетаза помимо образования оксида азота стимулирует синтез некоторых цитокинов: интерлейкина — 1р, альфа-интерферона, тогда как другие цитокины: ИЛ-4, ИЛ-8, ИЛ-10, напротив, подавляют активацию фермента. Вазодилатирующий эффект NO опосредуется активацией образования в гладкомышечных клетках цГМФ. Оксид азота также подавляет вазоконстрикторное действие ангиотензина-П. Синтезированный клетками эндотелия оксид азота выделяется не только через базальную мембрану в сторону гладкомышечных клеток кровеносных сосудов, но и через апикальную мембрану, где тормозит адгезию тромбоцитов и лейкоцитов крови к эндотелиальной выстилке стенки сосуда. Антиагрегантное действие оксида азота отчасти опосредовано простациклином, образующимся в эндотелии. В нервной системе NO является модулятором синаптической передачи, так как выявлено его поступление в синаптическую щель и показано ингибирующее влияние на выделение медиаторных аминокислот. Эндотелиальный гиперполяризующий фактор также вызывает дилатацию артериальных и венозных сосудов, но отличается от NO механизмом действия — способностью активировать ионные каналы (К+,СГ) и снижать возбудимость эндотелиальных клеток. К числу факторов регуляции адгезии и агрегации клеток относятся многочисленные интегрины и селектины, образуемые клетками эндотелия. 6.8.6. Регуляторная функция гормонов желудочно-кишечного тракта Клетки эпителия желудка и двенадцатиперстной кишки обладают способностью секретировать большое количество пептидных соединений, многие из которых выявляются также в головном мозге. Это дало основание рассматривать продуцирующие пептиды клетки в качестве единой APUD-сис- темы организма. Основной функцией гастроинтестинальных гормонов является регуляция процессов пищеварения, а мозговых пептидов — пищевого поведения. В связи с этим гастроинтестинальные гормоны, их природа и регуляторные эффекты представлены в главе 15 «Функции пищеварительной системы».
|
||||||||||||||||||||||
Последнее изменение этой страницы: 2020-12-09; просмотров: 111; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.145.45.223 (0.016 с.) |