Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Современные концепции математического развития

Поиск

Детей

Дошкольный возраст – яркая, неповторимая страница в жизни каждого человека. Именно в этот период начинается процесс социализации, устанавливается связь ребенка с ведущими сферами бытия: миром людей, природы, предметным миром. Происходит приобщение к культуре, к общечеловеческим ценностям. Закладывается фундамент здоровья. Дошкольное детство – время первоначального становления личности, формирования основ самосознания и индивидуальности ребенка.

Освоение детьми дошкольного возраста математического содержания является приоритетным в системе дошкольного образования в силу его особой значимости в познавательном развитии ребенка, приобщении его к активной, целенаправленной, результативной деятельности.

В соответствии с современной научной “Концепцией дошкольного воспитания” (авторы В.В. Давыдов, В.А. Петровский и др.) о призвании дошкольного периода детства на первый план выдвигается развивающая функция образования, обеспечивающая становление личности ребенка и раскрывающая его индивидуальные особенности. В условиях современных преобразований воспитание и обучение направлены на всестороннее развитие личности ребенка, его способностей (познавательных, коммуникативных, творческих, регуляторных).

 При этом формирование элементарных математических представлений основывается на важнейшем дидактическом принципе – развивающем обучении и научном положении Л.С. Выготского о том, что правильно организованное обучение “ведет” за собой развитие.  А также воспитание и психическое развитие не могут выступать как два обособленных, независимых друг от друга процесса, “воспитание служит необходимой и всеобщей формой развития ребенка” (В.В. Давыдов).

Современное состояние теории и технологии развития мате­матических представлений у детей дошкольного возраста сложи­лось в 80—90-е гг. XX вв. и первые годы нового столетия под вли­янием развития идей обучения детей математике, а также реорга­низации всей системы образования. Уже в 80-е гг. начали обсуждаться пути совершенствования как содержания, так и ме­тодов обучения детей дошкольного возраста математике. В каче­стве негативного момента отмечалась ориентировка на выработку у детей предметных действий, в основном связанных со счетом и простейшими вычислениями, без должного уровня их обобщен­ности. Такой подход не обеспечивал подготовку к усвоению мате­матических понятий в дальнейшем обучении.

Специалисты выясняли возможности интенсификации и оп­тимизации обучения, способствующие общему и математическо­му развитию ребенка, отмечали необходимость повышения теоре­тического уровня осваиваемых детьми знаний. Это требовало ре­конструкции программы обучения, в том числе переосмысления системы представлений, последовательности их формирова­ния. Начались интенсивные поиски путей обогащения содержа­ния обучения. Решение этих сложных проблем осуществлялось по-разному.

Психологи в качестве основания для формирования начальных математических представлений и понятий предлагали различные предметные действия. П. Я. Гальперин разработал линию форми­рования начальных математических понятий и действий, постро­енную на введении мерки и определении единицы через отноше­ние к мерке. Число при таком подходе воспринимается ребенком как результат измерения, как отношение измеряемой величины к избранной мерке. На основе этих и других исследований в програм­му обучения детей была включена тема «Освоение величин».

В исследовании В. В. Давыдова был раскрыт психологический механизм счета как умственной деятельности и намечены пути формирования понятия числа через освоение детьми действий уравнивания, комплектования и измерения. Генезис понятия числа рассматривался на основе кратного отношения любой вели­чины (непрерывной и дискретной) к ее части.

В отличие от традиционной методики ознакомления с числом (число — результат счета) новым явился способ введения самого понятия: число как отношение измеряемой величины к единице измерения (условная мерка), т. е. число — результат измерения.

Анализ содержания обучения дошкольников с точки зрения новых задач привел исследователей к выводу о необходимости учить детей обобщенным способам решения познавательных задач, усвоению связей, зависимостей, отношений и логических опера­ций (классификации и сериации). Для этого предлагались и своеоб­разные средства: модели, схематические рисунки и изображения, отражающие наиболее существенное в познаваемом содержании.

Математики-методисты (А. И. Маркушевич, Ж. Папи и др.) настаивали на значительном пересмотре содержания знаний для для детей 6-летнего возраста, насыщении его некоторыми новыми представлениями, относящимися к множествам, комбинаторике, графам, вероятности и т. д.

Методику первоначального обучения А. И. Маркушевич ре­комендовал строить, основываясь на положениях теории мно­жеств. Он считал необходимым обучать дошкольников простей­шим операциям с множествами (объединение, пересечение, до­полнение), развивать у них количественные и пространственные представления.

Ж. Папи (бельгийский математик) разработал интересную ме­тодику формирования у детей представлений об отношениях, функциях, отображении, порядке и др. с использованием много­цветных графов.

Идеи простейшей предлогической подготовки дошкольников разрабатывались в Могилевском педагогическом институте под руководством А. А. Столяра. Методика введения детей в мир ло­гико-математических представлений — свойства, отношения, множества, операции над множествами, логические операции (отрицание, конъюнкция, дизъюнкция) — осуществлялась с по­мощью специальной серии обучающих игр.

В педагогических исследованиях выяснялись возможности раз­вития у детей представлений о величине, установления взаимосвя­зей между счетом и измерением; апробировались приемы обучения (Р. Л. Березина, Н. Г. Белоус, 3. Е. Лебедева, Р. Л. Непомнящая, Е. В. Проскура, Л. А. Левинова, Т. В. Тарунтаева, Е. И. Щербакова).

Возможности формирования количественных представлений у детей раннего возраста и пути их совершенствования у детей дошкольного возраста изучены В. В.Даниловой, Л. И. Ермолае­вой, Е. А. Тархановой.

Содержание и приемы освоения пространственно-временных отношений определены на основе исследований Т. А. Мусейибо-вой, К. В. Назаренко, Т. Д. Рихтерман и др.

Методы и приемы математического развития детей с помо­щью игры были разработаны З.А.Грачевой (Михайловой), Т. Н. Игнатовой, А. А. Смоленцевой, И. И. Щербининой и др.

Исследовались возможности использования наглядного моде­лирования в процессе обучения решению арифметических задач (Н. И. Непомнящая), познания детьми количественных и функцио­нальных зависимостей (Л.Н. Бондаренко, Р. Л. Непомнящая, А. И. Кириллова), способности дошкольников к наглядному моде­лированию при освоении пространственных отношений (Р. И. Го­ворова, О. М. Дьяченко, Т. В. Лаврентьева, Л. М. Хализева).

Комплексный подход в обучении, эффективные дидактиче­ские средства, обогащенное содержание и разнообразные приемы обучения нашли отражение в конспектах занятий по формирова­нию математических представлений и методических рекоменда­циях по их использованию, разработанных Л. С. Метлиной.

Поиск путей совершенствования методики обучения матема­тике детей дошкольного возраста осуществлялся и в других странах.

М.Фидлер (Польша), Э.Дум, Д. Альтхауз (Германия) особое значение придавали развитию представлений о числах в процессе практических действий с множествами предметов. Предлагаемые ими содержание и приемы обучения (целенаправленные игры и упражнения) помогали детям овладеть умениями классифициро­вать и упорядочивать предметы по различным признакам, в том числе и по количеству.

Р. Грин и В. Лаксон (США) в качестве основы развития поня­тия числа и арифметических действий рассматривали понимание детьми количественных отношений на конкретных множествах предметов. Авторы уделяли большое внимание познанию детьми принципа сохранения количества в процессе практических дейст­вий по преобразованию дискретных и непрерывных величин.

Содержание математического развития в материнских школах Франции было направлено на освоение детьми классификации, отношений сходства, формирование понятий пространства и вре­мени (по материалам Т. Я. Миндлиной). Уделялось большое внимание счету. Причем, по мнению французских специалистов, дети до 4 лет должны были учиться считать без вмешательства взрослого. Играя с водой, песком и прочими веществами, малыши осваивали понятия о количестве и величине на сенсорном уровне, [я детей старше 4 лет рекомендовались систематические упраж­нения, направленные на формирование представлений о числах.

Французские педагоги материнских школ считали, что спо­собность к математике зависит от качества обучения. Ими была разработана система логических игр для детей разного возраста. В процессе игры у детей развивались способность к рассуждению, пониманию, самоконтролю, умение переносить усвоенное в новые ситуации. Дети 5—6 лет осваивали элементарные матема­тические понятия, в том числе понятие множества, используя ма­тематический язык; учились точно и кратко выражать свои мысли, обнаруживать и исправлять ошибки, допущенные другим ребенком.

Таким образом, в начале 90-х гг. XX в. наметилось несколько основных науч­ных направлений в теории и методике развития математических представлений у детей дошкольного возраста.

 

1.3. Математическое развитие дошкольников в условиях вариативности образовательной системы и реализации идей развивающего образования

Математическое развитие детей в конкретном образовательном учреждении (детский сад, группы развития, группы дополнительного образования, прогимназия и т. д.) проектируется на основе концепции дошкольного учреждения, целей и задач развития детей, данных диагностики, прогнозируемых результатов. Концепцией определяется соотношение предматематического и предлогического компонентов в содержании образования. От этого соотношения зависят прогнозируемые результаты: развитие интеллектуальных способностей детей, их логического, творческого или критического мышления; формирование представлений о числах, вычислительных или комбинаторных навыках, способах преобразования объектов и т. д.

Ориентировка в современных программах развития и воспитания детей в детском саду, изучение их дает основание для выбора методики. В современные программы («Развитие», «Радуга», «Детство», «Истоки» и др.), как правило, включается то логико-математическое содержание, освоение которого способствует развитию познавательно-творческих и интеллектуальных способностей детей.

Эти программы реализуются через деятельностные личностно-ориентированные развивающие технологии и исключают «дискретное» обучение, т. е. раздельное формирование знаний и умений с последующим закреплением (В. Оконь).



Поделиться:


Последнее изменение этой страницы: 2020-11-11; просмотров: 1122; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.129.67.32 (0.008 с.)