Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Нагрузки, действующие на крылоСодержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Крыло – основная часть самолета, создающая подъемную силу и обеспечивающая поперечную устойчивость. К нему предъявляются много аэродинамических, прочностных, конструктивных, производственных и эксплуатационных требований. Эти требования находятся в противоречии друг с другом, и конструктору приходится принимать компромиссные решения. Например, большое удлинение крыла l с точки зрения аэродинамики полезно, а с точки зрения прочности – нежелательно, так как у длинного крыла изгибающие моменты большие.
Рис. 4. Распределение нагрузок в случае А.
Большое сужение h ухудшает аэродинамические характеристики крыла, но улучшает его прочностные характеристики. Большая относительная толщина профиля увеличивает строительную высоту крыла, т.е. облегчает обеспечение его прочности, но одновременно увеличивает его лобовое сопротивление. Стреловидность крыла c улучшает его основные аэродинамические характеристики на околозвуковых скоростях, но затрудняет обеспечение его прочности из-за дополнительных крутящих моментов, возникающих у него. В результате стреловидное крыло получается в два раза тяжелее, чем прямое. На крыло действуют распределенные нагрузки от воздушных сил и веса крыла, а также сосредоточенные силы от веса двигателей, гондол, шасси и других грузов в крыле. На рис. 4 показано распределение нагрузки в расчетном случае Акр (выход из пикирования на Cy max). Воздушная нагрузка и вес крыла показаны эпюрами распределенной погонной нагрузки q аэр и q кр. Точное распределение воздушной нагрузки можно получить по аэродинамическим характеристикам крыла (в зависимости от l,h и c). Но более просто с достаточной степенью точности погонную нагрузку q аэр можно считать пропорциональной хорде. Так как расчетная сила на все крыло , то . Тогда , аналогично . Суммарная погонная нагрузка на крыло будет равна . Каждая половина крыла рассчитывается как консольная балка (рис. 5). Погонная нагрузка qz вызывает поперечную силу Qz и изгибающий момент M изг. ; .
Рис. 5. Эпюры сил и моментов, действующих на крыло в случае А: а) – эпюра нагрузок на крыло в расчетном случае А; б) – эпюра поперечной (перерезывающей) силы Q; в) – эпюра изгибающего момента М изг; г) – эпюра погонного крутящего момента mz; д) – эпюра крутящего момента М кр.
Кроме того, из-за несовпадения точек приложения q аэр и q кр с центром жесткости профиля крыла получается погонный крутящий момент mz (рис. 6): , где плечи a и c определяют, зная, что
Рис. 6. Схема сил, действующих в поперечном сечении крыла.
Интегрируя погонный крутящий момент по размаху крыла, получают крутящий момент M кр: . Анализируя полученные эпюры сил и моментов, действующих на крыло (рис. 5), можно выяснить ряд особенностей его работы: - вес крыла и грузы в нем (двигатели, топливо и т.п.) уменьшают в полете изгибающие моменты и перерезывающие (поперечные) силы; - двигатели, расположенные в гондолах перед крылом, разгружают крыло от крутящего момента; - перерезывающие силы с крыла передаются на фюзеляж и уравновешиваются его весом; - изгибающие моменты с одной половины крыла уравновешиваются моментом другой половины крыла; - крутящий момент крыла передается на фюзеляж и уравновешивается моментом горизонтального оперения; - шасси главных ног, убирающиеся назад, увеличивают M кр. 3.3 Конструкция крыла
Конструкция крыла за время развития авиации претерпела большие изменения. Крыло самолета А. Ф. Можайского имело деревянный каркас с расчалками, обтянутый с верхней выпуклой стороны материалом. Продолжительное время строились самолеты с бипланными деревянными крыльями и полотняной обшивкой. Позднее стали строить самолеты с цельнометаллическими монопланными крыльями, имеющими первоначально ферменные, а позднее балочные лонжероны и нервюры. В настоящее время на самолетах ГА в основном применяются свободнонесущие монопланные крылья с гладкой работающей обшивкой, моноблочной (кессонной) силовой схемы. Моноблочное крыло — цельнометаллическое тонкостенное сооружение, оболочка которого подкреплена внутренними продольными и поперечными элементами: лонжеронами, стрингерами и нервюрами (рис. 7). Силовой частью крыла является моноблок, расположенный между крайними лонжеронами крыла. Моноблок образуют верхняя и нижняя панели стенки лонжеронов и нервюр. Каждая панель состоит из обшивки, стрингеров, полок лонжеронов и нервюр. Обшивка крыла выполнена из гладких плакированных листов (материал Д16АТ, В95), толщина которых увеличивается по мере приближения к корневой части от 0,6 до 6 мм. Масса обшивки достигает 60% массы моноблочного крыла. Листы обшивки соединяются встык и крепятся к внутреннему набору клепкой, сваркой, клейкой. На современных самолетах широко используются монолитные панели: обшивка и внутренние силовые элементы выполнены «из одного куска». Такие панели изготовляют литьем, прессованием, фрезерованием, химическим травлением. Их подвергают механической обработке стальными шариками, что обеспечивает им заданную форму и выносливость. Обшивка придает крылу аэродинамическую форму; воспринимает воздушную и массовую нагрузки залитого в бак-отсек топлива; нагрузку от обшивки боковин фюзеляжа, мотогондол, шасси и работает в общей силовой схеме крыла. Воздушная нагрузка и нагрузка топлива действуют на обшивку нормально ее поверхности. Сохранение внешней формы крыла обеспечивается внутренними силовыми элементами: лонжеронами, стрингерами, нервюрами. Каждый прямоугольник обшивки, ограниченный смежными продольными и поперечными элементами и работающий на поперечный изгиб, передает на эти элементы поперечную нагрузку. Обшивка работает на растяжение, заклепки — на растяжение и срез. В перспективе развития крыла самолета ГА — применение многослойной обшивки, выполненной из внутреннего и наружного тонких металлических листов, между которыми расположен легкий заполнитель. Заполнитель в хвостовой части лопастей несущих винтов вертолетов Ми-6 и Ми-8 имеет сотовое строение. Рис. 7. Перспективными материалами для обшивки крыла являются композиционные материалы, состоящие из высокопрочных тонких нитей (нити бора, стекловолокно, графитовое волокно), заключенных в связующую основу (пластмассы, алюминиевые и другие матрицы). Лонжероны – продольные балки (рис. 8), образованные двумя поясами 1, стенкой 2 и подкрепляющими стойками 3 (изготовлены из материала Д16АТ и В95). Масса лонжеронов составляет 6-10% массы крыла. Пояса выполняются из прессованных и катаных профилей с последующим фрезерованием, обеспечивающим равнопрочность по размаху и наименьшую массу. Пояса со стенкой и обшивкой соединяются с помощью лапок и заклепочных швов. Съемная передняя часть крыла соединяется с полками переднего лонжерона с помощью винтов и свободноплавающих гаек. Лонжероны воспринимают местные нагрузки от обшивки, нервюр, агрегатов, топлива и работают и общей силовой схеме крыла. Пояса лонжерона воспринимают изгибающий момент Мz. В них появляются осевые силы сжатия-растяжения N и соответствующие нормальные напряжения σ (рис. 8). Рис. 8. Конструкция балочного лонжерона: 1 – пояс; 2 – стенка; 3 – стойка. Стенка лонжерона выполнена из листового дюралюминия толщиной от 3 (Ан-24) до 12 мм (Ту-154). Она воспринимает вертикальную поперечную силу Qz и участвует в восприятии крутящего момента M кр z. В стенке появляются касательные напряжения t Q и t M кр (см. рис. 8). Стрингеры — продольные профилированные силовые элементы, прессованные или катаные из брусков, гнутые или катаные из листов дюралюминия. В корневой части моноблочного крыла, как правило, применяют профили закрытого сечения (рис. 9,а) с высокими критическими напряжениями местной и общей потери устойчивости. В концевой части крыла используют менее прочные открытые профили (см. рис. 9,б). Масса стрингеров составляет около 20% массы моноблочного крыла. Стрингеры жестко связаны с обшивкой (заклепочным или клеесварным швом) и нервюрами (с помощью лапок и накладок). Они воспринимают местные погонные воздушные и массовые нагрузки со стороны обшивки, работают как многоопорные балочки на поперечный изгиб и, в свою очередь, нагружают нервюры. В общей силовой схеме крыла стрингеры воспринимают продольные силы сжатия и растяжения. Стрингеры и обшивка взаимно увеличивают устойчивость друг друга.
Рис. 9. Профиль стрингеров: а – закрытого сечения; б – открытого сечения.
На перспективных самолетах широко применяют монолитные панели, где стрингеры выполняются «из одного куска» с обшивкой. На крыльях с многослойной обшивкой стрингеры отсутствуют. Нервюры — поперечные балки, образованные двумя поясами, стенкой и стойками. Состоят из трех частей; передней, средней и хвостовой. Масса нервюр составляет 10—14% массы крыла. Они имеют форму профиля крыла и размещаются по потоку (c=0°) или перпендикулярно переднему лонжерону (c>0°). Расстояние между нервюрами зависит от толщины обшивки, шага и мощности стрингеров, удельной нагрузки крыла и составляет 150—400 мм. По назначению и конструкции нервюры делятся на нормальные и усиленные. Нормальные нервюры обычно штампуют из листового дюралюминия толщиной 0,8—1,5 мм. Отогнутые края стенки образуют полки нервюр, которые склепываются с обшивкой или стрингерами. Такие полки иногда усиливают дополнительным уголковым профилем. Стенки нервюр приклепывают к стенкам лонжеронов. Нормальные нервюры устанавливаются по всему размаху крыла. В топливных баках-отсеках стенки предотвращают волнообразование и гидроудары, а отверстия стенок обеспечивают перетекание топлива и выравнивание давления газов над топливом (см. рис. 7). В местах размещения мягких резиновых баков с контейнерами устанавливают поясные нервюры. Верхний и нижний пояса состоят из наружной и внутренней полок и невысокой стенки. Нормальные нервюры обеспечивают выдерживание аэродинамического профиля крыла. Каждая из них воспринимает нагрузку обшивки и стрингеров на шаге нервюр (рис. 10). Поперечная сила вызывает касательные напряжения в стенке и уравновешивается силами реакции R 1 и R 2 лонжеронов (см. рис. 10, в): . Несовпадение P н с плоскостями стенок лонжеронов сопровождается появлением изгибающего момента М н который уравновешивается парой нормальных сил N н в полках нервюры: М н = N н H.
Рис. 10. Схема нагружения и работы нормальной нервюры: а — внешняя нагрузка; б — равнодействующая внешней нагрузки; в — равновесие нервюры. Несовпадение Р н с ЦЖН приводит к появлению крутящего момента М кр.н = Р н е (см. рис. 10, б), который уравновешивается потоком касательных усилий τ М кр в замкнутом контуре крыла, образованном обшивкой верхней и нижней панелей и стенками крайних лонжеронов (см. рис. 10, в). В общей силовой схеме нервюры увеличивают устойчивость сжатой обшивки и стрингеров. Усиленные нервюры выполняют функции нормальных нервюр, обеспечивают стыковку частей крыла, крыла с фюзеляжем, подкрепляют крыло в местах излома моноблочной части, воспринимают сосредоточенные нагрузки от прикрепленных к крылу двигателей.
|
||
Последнее изменение этой страницы: 2019-05-20; просмотров: 2794; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.218.73.233 (0.009 с.) |