ТОП 10:

Кафедра аэродинамики, конструкции и прочности



МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ

ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

ГРАЖДАНСКОЙ АВИАЦИИ


Кафедра аэродинамики, конструкции и прочности

Летательных аппаратов

Андрюхин В.А., Ефимов В.В., Бехтина Н.Б.

 

КОНСТРУКЦИЯ И ПРОЧНОСТЬ

ЛЕТАТЕЛЬНЫХ АППАРАТОВ

 

 

Рекомендовано УМО вузов РФ по образованию в области эксплуатации авиационной и космической техники в качестве учебного пособия

 

 

Москва-2003


 


Содержание

 

Введение....................................................................................................... 4

1. Понятие о перегрузке.............................................................................. 4

2. Нормы лётной годности самолётов........................................................ 7

2.1 Общие сведения............................................................................ 7

2.2 Общие положения........................................................................ 9

2.3 Полетные нагрузки.................................................................... 11

2.4 Расчетные условия при выполнении маневров и при полете в неспокойном воздухе 11

3. Крыло..................................................................................................... 19

3.1 Назначение крыла и важнейшие технические требования к нему     19

3.2 Нагрузки, действующие на крыло............................................ 20

3.3 Конструкция крыла и работа его отдельных силовых элементов 25

3.4 Определение нормальных и касательных напряжений............ 29

3.4.1 Определение нормальных напряжений....................... 29

3.4.2 Определение касательных напряжений....................... 34

4. Фюзеляж................................................................................................. 38

4.1 Назначение фюзеляжа и основные требования, предъявляемые
к нему ..................................................................................................... 38

4.2 Нагрузка фюзеляжа и усиления в его сечениях........................ 39

4.3 Силовые элементы и конструктивные схемы фюзеляжей........ 40

4.4 Расчет фюзеляжа на прочность................................................. 42

5. Требования норм летной годности к нагрузкам на управляемые поверхности и систему управления................................................................................... 45

6. Элероны................................................................................................. 50

6.1 Компоновка и основные параметры элерона........................... 50

6.2 Нагрузки на элерон и расчет его на прочность........................ 51

6.3 Конструкция и работа элерона................................................. 53

7. Оперение самолета................................................................................ 54

7.1 Аэродинамическая и внутренняя компоновки оперения......... 54

7.2 Нагрузки, действующие на оперение........................................ 56

7.3 Конструкция и работа оперения самолета................................ 58

8. Механизация крыла............................................................................... 62

8.1 Конструкция двухщелевого выдвижного закрылка................. 63

8.2 Силы, действующие на закрылок.............................................. 64

8.3 Силовой расчет закрылка.......................................................... 65

8.4 Назначение и устройство интерцептора, предкрылка, щитка. 67


Введение

 

Настоящее пособие по дисциплине “Конструкция и прочность летательных аппаратов” предназначено для студентов всех форм обучения. В его основу положена учебная программа по специальности 130300, имеющая целью подготовку инженера-механика широкого профиля, обладающего правильным методологическим подходом к оценке конструкции и прочности летательных аппаратов (ЛА).

К современным ЛА предъявляются весьма разнообразные и зачастую противоречивые требования. Одним из основных является требование наименьшего веса ЛА и достаточной его прочности, поскольку повышение прочности обычно связано с утяжелением конструкции, а облегчение конструкции - с понижением прочности.

Под прочностью ЛА принято понимать способность его конструкции воспринимать, не разрушаясь, определенные внешние нагрузки. Для правильной оценки работоспособности конструкции ЛА необходимо в комплексе рассматривать назначение конструкции, действующие на нее внешние нагрузки, устройство конструкции и, наконец, ее прочность и жесткость. Знание всех этих сторон работы авиационных конструкций необходимо инженеру-механику для понимания и грамотного решения вопросов конструкции и прочности самолетов и вертолетов, которые могут встретиться в его практической деятельности при эксплуатации ЛА гражданской авиации.

В связи с ограниченным объемом пособие содержит лишь основные положения разделов курса “Конструкция и прочность летательных аппаратов”, которые могут составить основу знаний по настоящему предмету. Поэтому в процессе изучения курса желательно использование литературы, сведения о которой приведены в конце пособия.

 

Понятие о перегрузке

 

В полете на самолет действуют следующие силы (рис. 1): тяга двигателя P, аэродинамические — подъемная сила Y и лобовое сопротивление X, сила тяжести G. Эти силы показаны для самолета, рассматриваемого в виде материальной точки. Некоторые из них иногда могут отсутствовать: например, сила тяги при неработающем двигателе, аэродинамические силы при полете вне атмосферы.

В общем случае силы, действующие на самолет, не находятся в равновесии. Однако, если к движущемуся с ускорением телу приложить силы инерции mjτ и mjn, где т — масса, а jτ и jn — тангенциальное и нормальное ускорения соответственно, то согласно принципу Даламбера можно считать, что такое тело находится в равновесии.

 

  Рис. 1   Рис. 2

 

Удобно все силы, действующие на самолет, объединить в две группы — поверхностные и массовые; к поверхностным силам отнести аэродинамические силы и силу тяги, а к массовым — силы тяжести и инерционные.

Заменим поверхностные силы Р, Y и X их равнодействующей Rп, а массовые силы G, mjτ, mjn их равнодействующей Rм(рис. 2). Из условия равновесия сил, действующих на самолет, следует, что равнодействующая поверхностных сил равна равнодействующей массовых сил:

Силы, действующие на отдельные агрегаты самолета, можно разбить на те же группы. При этом для агрегата, расположенного внутри самолета, поверхностными силами будут силы реакций, возникающие в узлах крепления его к конструкции. Как и для всего самолета, для любого агрегата (рис. 2) можно записать:

где RПi, RМi — равнодействующая соответственно поверхностных и массовых сил i-го агрегата.

Коэффициентом перегрузки, или просто перегрузкой, называют отношение равнодействующей поверхностных сил к силе тяжести самолета:

Она может быть выражена также через массовые силы:

Перегрузка показывает, во сколько раз равнодействующая поверхностных (массовых) сил больше или меньше силы тяжести самолета.

Перегрузка — величина векторная. Ее направление совпадает с направлением равнодействующей поверхностных сил. На практике обычно пользуются не полной перегрузкой п, а ее проекциями на оси скоростной (ха, уа, z а) или связанной (x, у, z) системы координат. Перегрузкой в данном направлении называют отношение проекции равнодействующей поверхностных сил на это направление к силе тяжести самолета. При этом

поперечная (нормальная) перегрузка ;

продольная (тангенциальная) перегрузка ;

боковая перегрузка .

Здесь Rх, Rу и R z — проекции равнодействующей поверхностных сил на координатные оси х, у и z соответственно.

Полная перегрузка п связана с ее составляющими соотношением

.

Зная перегрузку и вес, можно определить силы, действующие на самолет и отдельные агрегаты его. Например, если пренебречь составляющей силы тяги на ось у, то подъемная сила

 Y = пyG.

Массовая сила от веса груза или агрегата, например, от веса двигателя Gдв,

Pдв = – nyGдв.

 

Знак «минус» здесь указывает на то, что сила Рдв, направлена в сторону, противоположную действующей перегрузке.

Выше речь шла о перегрузках в центре тяжести самолета. Если вращение самолета относительно центра тяжести отсутствует и он рассматривается как жесткое тело, то все его части испытывают одинаковые ускорения и одинаковые перегрузки, равные перегрузкам ny0и nx0в центре тяжести.

При вращении самолета с угловой скоростью ω и ускорением ε линейные ускорения в различных его точках будут неодинаковыми. В точке i самолета (рис. 3), расположенной на расстоянии х от центра масс (ц.м.), добавятся ускорения относительного движения — нормальное ∆jn = – ω2х и тангенциальное ∆jτ = εx. Этим ускорениям соответствуют перегрузки

пх = ∆jn / g = - ω2х/ g;

и

пу = ∆jτ / g = εх/ g.

 

Суммарные перегрузки массы i при этом:

 

п xi = nx0 +∆пх = nx0 — ω2х/ g;

 

п yi = ny0 +∆п y = ny0 + εх/ g.

 

Рис. 3

 

В общем случае составляющие перегрузки массы i, расположенной на оси самолета на удалении х от центра тяжести,

пх i = nx0 – (ωу2+ ωz2) x/g;

 

п yi = ny0+ εzх/ g;

 

п zi = nz0+ εyх/ g,

 

где ωу, ωz – угловые скорости относительно осей у и z соответственно, 1/с;

εy = My/Jy, εz = Mz/Jz – угловые ускорения относительно тех же осей, 1/с2;

My Mz, Jy Jz – моменты поверхностных сил и массовые моменты инерции самолета относительно осей у и z соответственно.

По длине самолета перегрузки изменяются линейно (рис. 3).

 

Общие сведения

 

Первое издание «Норм летной годности гражданских самолетов СССР» (НЛГС) было введено в действие в 1967 г. В дальнейшем, после внесения в них пяти изменений, НЛГС стали именоваться НЛГС-1 (1972 г.). Второе издание «Норм летной годности гражданских самолетов СССР» (НЛГС-2) было введено в действие в 1974 г. НЛГС-2 в период 1975 – 1980 гг. были полностью внедрены в практику работы промышленности, гражданской авиации и Авиационногорегистра и сыграли важную роль в создании, сертификациии эксплуатации нового поколения отечественных пассажирских самолетов, повышении уровня их безопасности, а также в накоплении отечественного опыта применения на практике требований к летной годности. По результатам этой работы с учетом новых требований ИКАО, опыта совершенствования зарубежных и национальных НЛГ,развития авиационной науки и техники было подготовлено и введено в действие третье издание «Норм летной годности гражданских самолетов СССР» (НЛГС-3, 1984 г.), которые в 1985 г. были приняты странами-членами СЭВ в качестве «Единых норм летной годности гражданских транспортных самолетов» (ЕНЛГ-С).

Сравнительный анализ НЛГС-3, FAR и JAR показал, что устанавливаемые ими уровни безопасности практически эквивалентны. По отдельным требованиямимеются отличия между указанными НЛГ, содержащими менее или более жесткие требования к некоторым характеристикам. Однако наиболее существенным является отличие НЛГС-3 от FAR и JAR по структуре расположения требований и их нумерации, что затрудняет понимание отечественных НЛГС за рубежом.

С 1990 г. была начата работа по сближению отечественных НЛГ с Нормами США и Западной Европы по структуре и содержанию требований с учетом обеспечения конкуренто­способности отечественных воздушных судов.

Настоящие «Нормы летной годности самолетов транспортной категории» являются Частью 25 Авиационных Правил (АП-25), учитывают требования отечественных Норм летной годности гражданских самолетов (НЛГС-3), построены по структуре, принятой в FAR-25, и включают в себя Поправки к ним с 1 по 73.

Нумерация частей АП аналогична нумерации соответствующих частей FAR.

При полном совпадении текстов требований АП-25 и FAR-25 нумерация идентична нумерации FAR-25 без введения дополнительных обозначений.

Для удобства пользователей наличие в отдельных параграфах отличий требований АП-25 от требований FAR-25 (исключение, дополнение, введение новых требований и т. п.) обозначается выделением номера и названия параграфа курсивом. При этом в имеющих такие отличия параграфах введенный дополнительный к требованиям FAR-25 или заменяющий их текст в виде целых пунктов и подпунктов обозначен прописными буквами латинского алфавита (например: (А), (В), (С), …). Сам этот текст и дополнения, имеющиеся в отдельных пунктах и подпунктах и состоящие из нескольких слов, выделены курсивом. Текст, содержащийся во Введении, Разделе А-0, Приложении П25А-0 и Дополнении Д25F, курсивом не выделяется. Перевод англо-американских единиц измерения в метрические единицы не обозначается как отличие АП-25 от FAR-25.

АП-25 включают в себя ряд дополнений и приложений, содержащих требования по вопросам эксплуатации самолетов, аналогичные требованиям, содержащимся в FAR-91, FAR-121 и др. По мере разработки соответствующих частей отечественных авиационных правил, эти требования будут исключаться из настоящей Части 25.

 

Общие положения

 

25.301. Нагрузки

(a) Требования к прочности определены через эксплуатационные нагрузки (максимальные нагрузки, возможные в эксплуатации) и расчетные нагрузки (эксплуатационные нагрузки, умноженные на предписанные коэффициенты безопасности). Если нет специальных оговорок, то под заданными нормированными нагрузками подразумеваются эксплуатационные нагрузки.

(b) Если нет специальных оговорок, то нагрузки, возникающие в воздухе, на земле или на воде, должны быть уравновешены инерционными силами всех частей самолета. Распределение этих нагрузок может быть приближенным, взятым с запасом, или должно точно отражать фактические условия. Методы, применяемые для определения интенсивности и распределения нагрузок, должны быть подтверждены измерениями нагрузок в полете, если не показано, что применяемые методы определения этих нагрузок надежны (см. МОС 25.301).

(c) Если деформации конструкции под нагрузкой значительно изменяют распределение внешних или внутренних нагрузок, это перераспределение следует принимать во внимание.

 

25.302. Взаимодействие систем и конструкции

Для самолетов, оборудованных системами, которые непосредственно или в результате отказа или неисправности влияют на характеристики прочности, должно быть принято во внимание влияние этих систем и их отказов при доказательстве соответствия с требова­ниями разделов С и D (см. МОС 25.302).

 

25.303. Коэффициент безопасности

За исключением специально оговоренных случаев, коэффициент безопасности принимается равным 1,5. На него умножаются заданные эксплуатационные нагрузки, которые рассматриваются как внешние нагрузки на конструкцию. Если условия нагружения определены через расчетные нагрузки, то умножать на коэффициент безопасности не следует, за исключением специально оговоренных случаев.

Прочность и деформация

(a) Конструкция должна выдерживать эксплуатационные нагрузки без появления опасных остаточных деформаций. При всех нагрузках, вплоть до эксплуатационных, деформации конструкции не должны влиять на безопасность эксплуатации.

(b) Конструкция должна выдерживать расчетные нагрузки без разрушения в течение не менее трех секунд. Однако, когда прочность конструкции подтверждена динамическими испытаниями, имитирующими реальные условия нагружения, требование о трех секундах не применяется.

(e) Самолет должен быть спроектирован таким образом, чтобы выдерживать вибрации бафтинг, которые могут возникнуть при всех возможных в эксплуатации условиях на скоростях вплоть до VD/MD, в том числе на режимах сваливания при возможных непреднамеренных выходах за границы области начала бафтинга. Соответствие этому требованию должно быть показано с помощью расчетов, летных испытаний или других испытаний, которые будут признаны необходимыми Компетентным органом.

(f) Самолет должен быть спроектирован таким образом, чтобы выдерживать действующие на конструкцию вибрации, если они являются следствием таких повреждений, отказов или нарушений функционированиясистемы управления самолета, для которых не показана их практическая невероятность. Возникающие при этом нагрузки должны рассматриваться в качестве эксплуатационных и должны быть исследованы на всех скоростях полета вплоть до VС/МС.

 

Доказательства прочности

(a) Соответствие требованиям прочности и деформации, приведенным в настоящем разделе, должно быть показано для каждого расчетного случая нагружения. Подтверждение прочности конструкции одними расчетами допускается лишь в том случае, если данная конструкция соответствует тем конструкциям, для которых, как показал опыт, применённый метод расчета является надежным.

В остальных случаях должны проводиться подтверждающие статические испытания. Эти испытания должны проводиться до расчетных значений нагрузок, если с Компетентным органом не будет согласовано, что в каждом конкретном случае можно испытаниями до меньших нагрузок получить эквивалентное подтверждение достаточной прочности.

(b) [Зарезервирован].

(c) [Зарезервирован].

(d) Если для подтверждения соответствия требованиям параграфа 25.305 (b) используются статические или динамические испытания конструкции самолета, результаты этих испытаний должны быть откорректированы введением соответствующих коэффициентов, кроме тех случаев, когда испытываемая конструкция или часть ее таковы, что общая прочность конструкции обеспечивается значительным количеством элементов и разрушение одного из них приводит к перераспределению нагрузки на другие элементы.

 

Полетные нагрузки

 

Общие положения

(a) Полетная перегрузка представляет собой отношение компонента аэродинамической силы (действующей перпендикулярно продольной оси самолета) к весу самолета. За положительную перегрузку принимается перегрузка, при которой аэродинамическая сила направлена вверх по отношению к самолету.

(b) Полетные нагрузки, определенные с учетом сжимаемости воздуха при всех скоростях, должны быть рассмотрены:

(1) во всем диапазоне расчетных высот полета, выбранных Заявителем;

(2) при всех значениях весов: от расчетного минимального веса до расчетного максимального веса, соответствующих каждому отдельному полетному случаю нагружения;

(3) при всех требуемых сочетаниях высоты и веса при любом практически возможном распределении нагрузки в пределах эксплуатационных ограничений, предписанных в РЛЭ.

 

2.4 Расчетные условия при выполнении маневров
и при полете в неспокойном воздухе

 

25.331. Общие положения

(с) Условия неустановившегося маневра. Должны быть рассмотрены следующие случаи при наличии угловых ускорений:

(2) Контролируемый маневр между скоростями VA и VD. Должно быть рассмотрено выполнение контролируемого маневра при отклонении поверхностей управления тангажом, в ходе которого не будет превышена предельная маневренная перегрузка.

Самолет первоначально находится в полете в уравновешенном состоянии с перегрузкой п1 = 1 при любой скорости в диапазоне от VА и VD.. Необходимо исследовать контролируемые продольные маневры до значений перегрузки (пII и пIII), при этом перегрузки достигают максимальной величины в переходном режиме.

пII= пэmax(a) ; пIII = 1–∆пmax, но |пIII|< пэmin(a)

Здесь пmax= пэmax(a) – 1; пэmin(a)и пэmax(a)[см 25.337(а)].

Принимается, что маневры выполняются следующим образом: штурвал (ручка) отклоняется в одном направлении, затем в другом до положения, значительно далее исходного положения, прежде чем возвратиться к нему. В качестве приближенной может быть принята следующая математическая зависимость:

δ= δМ sin(ωt),

где δ - угол отклонения штурвала (ручки); ω— круговая частота незатухающих собственных короткопериодических колебаний самолета как жесткого тела, но не менее чем 2π/Т. Здесь Т = 4 - VА/V, где VA - скорость маневрирования; V - рассматриваемая скорость, при этом обе скорости выражаются в одинаковых единицах.

Как правило, достаточно проанализировать три четверти периода отклонения, если принять, что возвращение штурвала (ручки) производится более плавно. Указанная выше скорость отклонения штурвала (ручки) при сохранении максимального нормального ускорения, достигаемого при маневре, может регулироваться с учетом ограничений, которые могут накладываться величиной прилагаемых пилотом максимальных усилий, указанных в 25.397, крайними положениями системы управления и любым другим косвенным путем, определяемым ограничениями в выходных характеристиках системы управления, как, например, моментом сваливания или максимальной скоростью, задаваемой для бустерной системы управления.

(d) Полет в неспокойном воздухе. Должны быть рассмотрены условия полета в неспокойном воздухе от точки В' до точки J' параграфа 25.333 (с), при этом:

(1) Дополнительная аэродинамическая нагрузка от нормированного порыва добавляется к исходной уравновешивающей нагрузке на хвостовое оперение.

(2) При определении дополнительной нагрузки на хвостовое оперение от порыва необходимо учитывать действие скоса потока за крылом и изменение угла атаки самолета от этого порыва.

Если отсутствует более точный расчет, дополнительную нагрузку на оперение от порыва следует определять по формуле

РН = 0,06·С yα V Ude S(1 – dε/dα),

 

где РН.В дополнительная нагрузка на горизонтальное оперение, Н;

Ude эффективная скорость порыва, м/с [см. 25.341 (а)];

V индикаторная скорость самолета, м/с;

Сya — производная коэффициента нормальной силы горизонтального оперения по углу атаки, 1/рад;

S площадь горизонтального оперения, м2;

(1 — dε/dα) — коэффициент скоса потока.


Крыло

 

3.1 Назначение крыла
и важнейшие технические требования к нему

Основное назначение крыла — создание подъемной силы, потребной для всех нормальных режимов полета самолета, при возможно меньшей затрате тяги двигательной установки. Кроме того, крыло играет важную роль в обеспечении устойчивости и управляемости самолета и может использоваться для размещения и крепления ряда агрегатов (шасси, топливные баки, двигательная установка и др.).

Крыло является важнейшей частью конструкции самолета.

На долю крыла приходится значительная часть массы и полного лобового сопротивления самолета. Обычно для дозвуковых самолетов масса крыла

mкр = (0,07...0,16) m0, m0 = (0,35...0,45)mкон,

где m0 — взлетная масса самолета; mкон — масса конструкции самолета.

На режимах полета, близких к полетам с Кmах, отношение коэффи­циента лобового сопротивления крыла к коэффициенту лобового сопротивления самолета Cхкрх = 0,3...0,5.

Рассмотрим важнейшие технические требования, предъявляемые к крылу, и пути их реализации.

Аэродинамические требования. Внешние формы и геометрические размеры крыла должны обеспечить получение летных свойств, соответствующих назначению самолета. При этом необходимо учитывать взаимодействие крыла с другими частями самолета.

Рассмотрим основные аэродинамические требования.

1. Малое сопротивление крыла, характеризуемое произведением CхаS на основных режимах полета, достигается подбором профилей крыла с малым Сха;выбором рациональной формы крыла в плане, ограничением площади крыла S и улучшением состояния внешней поверхности крыла (уменьшение шероховатости обшивки, недопущение применения стыков внахлестку, выступания заклепочных головок и других неровностей, повышающих Сха).

2. Высокое значение Mкрит для околозвуковых самолетов и по возможности минимальное изменение Cха и Cуа по М при переходе к сверхзвуковым скоростям полета обеспечивается специальными cкоростными профилями малой относительной толщины, стреловидными крыльями в плане и крыльями малого удлинения.

3. Достаточно большое значение произведения Cmax S, характеризующего способность крыла создавать необходимую подъемную силу для полета на малых скоростях и возможность увеличения ее за счет механизации крыла, достигается постановкой профиля с большим значением Cmax и подбором размеров и формы крыла, обеспечивающих нужные взлетно-посадочные характеристики.

4. Высокое максимальное качество самолета Кмах = (C/Cха)мах, необходимое для увеличения дальности и потолка полета, достигается использованием профилей с большими значениями Кмах и крыльев больших удлинений; обеспечением хорошего состояния внешней поверхности крыла, а также специальной компоновкой внешних форм самолета.

5. Обеспечение устойчивости и управляемости на всех допустимых для самолета летных режимах.

Эти требования обеспечивают увязку компоновки крыла с аэродинамической компоновкой самолета.

Компоновочные требования определяются возможностью размещения на крыле грузов и агрегатов, а также средств механизации. При этом допустимо лишь незначительное увеличение сопротивления крыла надстройками или ухудшение состояния его поверхности из-за наличия створок. На скоростных самолетах это условие иногда вынуждает отказаться от установки двигателей в крыле, от крепления к крылу опор шасси. Кроме того, при сопряжении крыла с другими частями самолета не должна нарушаться структура их силовых схем.

Требования к прочности и жесткости крыла. Для обеспечения безопасности полета самолета на всех допустимых режимах эксплуатации крыло должно обладать при возможно меньшей массе конструкции достаточными прочностью, живучестью и жесткостью.

Необходимо обеспечить жесткость конструкции крыла, достаточную для того, чтобы критические скорости, при которых возникают недопустимые явления аэроупругости, превышали предусмотренные в эксплуатации скорости полета.

Эксплуатационные требования. При создании крыла необходимо обеспечивать выполнение всех общих требований к эксплуатационной технологичности конструкции.

Технологические требования определяют производственную и ремонтную технологичность конструкции крыла. Крылья - это клепаные тонкостенные конструкции из листов, профилей и монолитных панелей. Поэтому необходимо обеспечить малую трудоемкость и простоту их изготовления и ремонта, точное выполнение внешних очертаний крыла, возможность применения сравнительно недорогих материалов и полуфабрикатов.

Технические требования, предъявляемые к крылу, в значительной степени противоречивы.

Фюзеляж

 

 

4.1 Назначение фюзеляжа и
основные требования, предъявляемые к нему

 

Основное назначение фюзеляжа - это размещение экипажа, оборудования, грузопассажиров в соответствии с ТТ. Часто в фюзеляже размещается двигательная установка. Фюзеляж связывает основные части самолета в единое целое: с ним соединяются крыло, оперение, передняя или хвостовая, а иногда и главные опоры шасси, и двигатели. Из многочисленных требований к фюзеляжу можно выделить четыре основные группы: аэродинамические, прочностные, компоновочные и эксплуатационные.

Аэродинамические требования определяют внешние очертания, размеры и параметры фюзеляжа, обеспечивающие его минимальное сопротивление в полете и достаточную продольную и путевую устойчивость самолета.

Прочностные требования - необходимая прочность, жесткость, долговечность и живучесть конструкции - должны выполняться при минимальном весе фюзеляжа.

Указанные требования реализуются приданием фюзеляжу соответствующих внешних обводов. Например, у большинства ЛА фюзеляж имеет круговую форму поперечных сечений, которая выгодна как с аэродинамической, так и с конструктивной точек зрения.

 

Система управления

(а) Системы продольного, поперечного и курсового управления и управления торможением и их крепления должны быть рассчитаны на нагрузки, равные 125% шарнирных моментов отклоняющихся поверхностей управления, определенные при условиях, приведенных в параграфе 25.391.

(b) Эксплуатационные нагрузки на систему управления, за исключением нагрузок, возникающих на земле от ветра, не должны превышать нагрузок, которые могут быть созданы пилотом (или пилотами) и автоматическими или силовыми устройствами.

 

Двойное управление

(а) Каждая система двойного управления должна быть рассчитана на нагрузки от пилотов, действующих в противоположном направлении; при этом усилие каждого пилота должно быть не менее 0,75 величин усилий, указанных в 25.395.

(b) Система управления должна быть рассчитана на нагрузки от пилотов, действующих в одном направлении. В этом случае усилие пилота должно составлять не менее чем 0,75 от величины, указанной в параграфе 25.395.

 

Несимметричные нагрузки

(а) Горизонтальное хвостовое оперение и элементы конструкции, к которым оно крепится, должны быть рассчитаны на несимметричные нагрузки, возникающие при скольжении и обдувке винтами в сочетании с нормированными условиями полета.

(b) При отсутствии более точных данных применяются следующие требования:

(1) для самолетов с обычным расположением воздушных винтов, крыльев, хвостового оперения и с обычной формой фюзеляжа:

(i) можно считать, что 100% максимальной нагрузки случая симметричного полета действует на поверхность управления по одну сторону оси симметрии и

(ii) 80% этой нагрузки — по другую сторону.

Сочетание аэродинамической нагрузки, указанное в ( i )и ( ii ), принимается также, если проверка прочности самолета производится на нагрузки, определенные с учетом влияния динамичности нагружения при воздействии однократного порыва (См. Приложение G )

(А) Необходимо рассмотреть совместное нагружение горизонтального и однокилевого вертикального оперения во всех случаях, предусмотренных для изолированного симметричного нагружения горизонтального оперения в параграфах 25.331 (b), (с), (d), 25.345 (а) и для изолированного нагружения вертикального оперения — в параграфе 25.351.

(1) Нагружение горизонтального оперения.

( i ) При установившемся маневре в вертикальной плоскости нагрузки определяются при перегрузке

nсовм= 1 ... 0,75(n — 1),

где n – перегрузка рассматриваемого случая при изолированном нагружении;

n совм  –  перегрузка при совместном нагружении.

( ii ) Нагрузки при неустановившемся маневре определяются из расчетов, аналогичных расчетам в изолированных случаях нагружения [см. 25.331 (с) (2)], но при этом должны быть приняты следующие значения перегрузок nI , n II и nIII .

– при убранной взлетно-посадочной механизации

nI =1; nII = 1 — 0,75 Dnман; nIII =-1 — 0,75Dnман, но ½nIII½£½1—0,75 (1 — nэmin(a))½;

– при выпущенной взлетно-посадочной механизации

nI = 1; nII = 1,75; nIII = 0,25.

(iii) Маневр на скорости VA [см. 25.881 (с) (1)] совместно со случаями нагружения вертикального оперения не рассматривается.

(i v ) Нагрузки при полете в неспокойном воздухе определяются для значений U de равных 75% их значений при изолированном нагружении [см. 25.331 (d), 25.342 (а) (2)].

(2) Нагружение вертикального оперения.

(i) Нагрузки на вертикальное оперение при маневре определяются из расчетов, аналогичных расчетам в изолированном случае нагружения [Cм. 25.351 (а)], но при этом величина отклонения педали принимается равной 75% ее отклонения в изолированном случае.

( ii ) Нагрузки при полете в неспокойном воздухе определяются для значении U de , равных 75% их значений при изолированном нагружении [см. 25.351 (b)].

( iii ) Нагрузки на вертикальное оперение в совместных случаях нагружения допускается принимать равными 75% нагрузок, действующих при изолированном нагружении, а углы скольжения самолета и отклонения руля направления — 75% соответствующих углов для изолированного нагружения.

(3) При совместном нагружении горизонтального и вертикального оперений нагрузку на горизонтальное оперение следует считать действующей несимметрично в соответствии с углом скольжения, определенном в рассматриваемом случае совместного нагружения. Несимметрию в распределении нагрузки между двумя половинами горизонтального оперения следует определять на основе эксперимента в аэродинамических трубах при указанном угле скольжения (75% угла скольжения соответствующего изолирoваннoгo случая нагружения вертикального оперения).

(В) При расположении горизонтального оперения на вертикальном следует дополнительно рассмотреть совместное нагружение вертикального оперения нагрузками, приходящимися на него в изолированных случаях нагружения (25.351), и горизонтального оперения несимметричной нагрузкой. Нагрузка на горизонтальное оперение в этом случае равна уравновешивающей нагрузке горизонтального полета. Несимметрию в распределении нагрузки между половинами горизонтального оперения следует определять на основе испытаний в аэродинамических трубах при полном угле скольжения соответствующего случая нагружения вертикального оперения.

Закрылки, предкрылки

Закрылки, предкрылки, их механизмы управления и элементы конструкции, к которым они крепятся, должны быть рассчитаны на расчетные нагрузки, возникающие в условиях, указанных в 25.345, в сочетании с нагрузками, возникающими при перемещении закрылков из одного положения в другое при соответствующих скоростях полета.

 

Специальные устройства

Нагрузки на специальные устройства, имеющ







Последнее изменение этой страницы: 2019-05-20; Нарушение авторского права страницы

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 34.229.119.29 (0.04 с.)