![]()
Заглавная страница
Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь ![]() Мы поможем в написании ваших работ! КАТЕГОРИИ: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() Мы поможем в написании ваших работ! ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву ![]() Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Применение стимуляторов роста растений
Регуляторы (стимуляторы) роста растений — вещества, влияющие на процессы роста и развития растений. К настоящему времени регуляторы роста растений нашли практическое применение в следующих основных областях: 1) возрождает ослабленные и омолаживает старые растения, за счёт стимуляции побегообразования и корневой системы; 2) восстанавливает повреждённые растения после перенесённых стрессов (посадка, пересадка, хранение, длительная транспортировка, неоптимальная освещённость и температура, обработка пестицидами, засолённость и др.); 3) вызывает раннее и обильное цветение, интенсивное окрашивание листьев и сочную окраску цветов за счёт усиления синтеза хлорофилла и других пигментов; 4) индуцирует повышенную сопротивляемость к фитопатогенам (особенно корневым гнилям), вредителям, неблагоприятным условиям выращивания; 5) вызывает активное нарастание вегетативной массы 6) активирует ферментативную и гормональную системы растения и т.д. При применении рост регулирующих препаратов необходимо учитывать то, что каждый из них создан для стимулирования роста, развития и повышения продуктивности определенных культур при соответствующих дозах, сроках и способах применения. Активизирует процессы жизнедеятельности растений, увеличивает продуктивность, улучшает качество продукции, укрепляет защитные свойства, повышает устойчивость к неблагоприятным условиям выращивания - резким перепадам температур, морозам, весенним возвратным заморозкам, жаре и засухе или напротив, переувлажнению почвы и недостаточной сумме активных температур [9]. Под действием препаратов происходят направленные изменения к интенсивному наращиванию зеленой массы, стимулируются процессы регенерации клеток, улучшается и лучше усваивается витаминный обмен, укрепляется иммунитет и общее состояние растений. Стимулирование собственного иммунитета растений (фитоиммунокор-рекция), позволяет индуцировать у растений комплексную неспецифическую устойчивость ко многим болезням грибного, бактериального и вирусного происхождений, а также к другим неблагоприятным факторам среды (засуха, низко- и высокотемпературные стрессы). Регуляторы роста позволяют значительно уменьшить кратность обработки посевов фунгицидами в период вегетации, а в перспективе, возможно, и полностью отказаться от них, т. к. они имеют ряд преимуществ: не токсичность, низкие концентрации использования. Пробуждать дополнительный прирост необходимо благодаря внесению макро-, и микроудобрений, продуктов микробиологического синтеза. Например, такие микроудобрения, как Флорист Рост и Флорист Микро, которое способствует укреплению иммунной системы растений, а так же приживаемости растений и рассады при пересадке. Ассортимент стимуляторов роста представлен очень широко. Их необходимо разделить исходя со специфики действия на растения: стимуляцией физиологических процессов, повышением устойчивости растений к действию неблагоприятных факторов и усилением неспецифического иммунитета. Результатом такого действия является повышение урожайности и качества выращиваемой продукции. Так, к примеру, препараты на основе метаболитов грибов позволяют индуцировать у растений комплексную неспецифическую устойчивость ко многим болезням грибкового, бактериального и вирусного происхождения и одновременно развивать антистрессовую активность (Альбит, Фитоспорин) [14, 16].
1.7. Методы определения содержания органических кислот в растениях Один из методов определения кислот, находящиеся в растениях в свободном состоянии или в виде растворимых и нерастворимых в воде солей - извлечение раствором азотной кислоты в 70%-ном этиловом спирте. При этом пектиновые вещества и другие коллоиды остаются в осадке. В полученном растворе азотную кислоту нейтрализуют едким натром и органические кислоты осаждают уксуснокислым свинцом. Осаждение идет в 70%-ном растворе этилового спирта, подкисленного уксусной кислотой для предотвращения образования основных солей. В 70%-ном спирте свинцовые соли органических кислот практически нерастворимы. После отделения осадка центрифугированием и промывания 70%-ным спиртом для удаления избытка свинца осадок обрабатывается карбонатом натрия. При этом образуется нерастворимый в воде углекислый свинец, а органические кислоты и пигменты в виде натриевых солей переходят в раствор. После центрифугирования и удаления раствора осадок растворяется в соляной кислоте. В растворе находится эквивалентное кислотам количество ионов свинца, которое определяется комплексонометрическим методом. Для этого добавляют в избытке трилон Б, который реагирует с ионами свинца, образуя прочное комплексное соединение. Остаток трилона Б титруют сернокислым магнием. Суммарное количество ди- и трикарбоновых кислот вычисляют по лимонной или яблочной кислоте [23]. В основу следующего метода положено извлечение органических кислот из растений дистиллированной водой при нагревании. Извлеченные таким образом и отфильтрованные органические кислоты учитывают титрованием 0,1 н. раствором щелочи. Результаты определений пересчитывают на яблочную кислоту, умножая количество 0,1 н. NaOH, пошедшей на нейтрализацию на коэффициент 0,0067. Содержание органических кислот выражают в мг на 100 г растительного материала [21]. МАТЕРИАЛ И МЕТОДИКА ИССЛЕДОВАНИЙ Объект исследования Эйхориия, водный гиацинт — Е. crassipes (Martius) Solms Laubach. Произрастает в прудах, озерах, болотах в тропических и субтропических районах Америки. Очень эффектное и необыкновенное по форме растение. Культивируют его в илистой почве или на поверхности воды. Образует розетку своеобразных листьев с оригинальными вздутыми, яйцевидной формы черешками, играющими роль поплавков. Над поверхностью воды образуются ложкообразные, гладкие, зеленые листья с блестящей поверхностью и округлым основанием, к вершине овальнозауженные, по краям ровные, к поверхности воды несколько изогнутые, симметричные; продольные жилки листа просматриваются хорошо. Взрослые экземпляры растений несут до 10 листьев. Корневая система мочковатая, корни реснитчатые, хрупкие, темного цвета. На цветоносе развиваются 5—12 цветков. Они собраны в колосовидные соцветия, напоминающие соцветия гиацинта, крупные, шестилепестковые, фиолетово-голубые, верхний лепесток окрашен более ярко и примерно в середине имеет темно-желтое пятно; тычинки фиолетового цвета. При благоприятных условиях это растение может образовать многочисленные побеги и быстро размножиться. В естественных условиях гиацинт затягивает всю поверхность водоема, вытесняя другие виды растений. Из пазух листьев могут отходить побеги, образующие новые растения. Наилучшие условия содержания — небольшой уровень воды, верхнее освещение, наличие дневного света, чистая вода, оптимальная температура воды и воздуха летом 26°С, зимой 20—22°С; в зимнее время требуется дополнительное искусственное освещение. Молодые растения зиму переносят легче, чем взрослые. Цветение отмечается в июле — августе. Эйхорния может использоваться как естественный затенитель для других тенелюбивых растений [24] . Методы исследования Углеводы, в частности альдозы, определялись иодометрическим методом (по Вильштеру и Шудлю). Тщательно измельченную навеску вещества (1г.) переносят в колбу емкостью 100 мл, растворяют в воде и доводят водой до метки. Затем содержимое колбы фильтруют или центрифугируют, из фильтрата в колбу Эрленмейера отбирают 10 мл раствора, что соответствует 0,1 г исходного вещества. В колбу добавляют 25 мл 0,1 н. раствора иода и через 2—З мин при энергичном помешивании медленно наливают 35 мл 0,1 н. раствора NаОН до исчезновения окраски иода. Колбу закрывают хорошо пригнанной резиновой или притертой стеклянной пробкой и ставят на 20 мин. в темное место. Затем колбу вынимают, добавляют в нее 1 н. раствора Н2SО4 и оттитровывают выделившийся иод 0,1 н. раствором Na2S2O3, добавляя к концу титрования раствор крахмала в качестве индикатора. Одновременно проводят контрольный опыт с 10 мл дистиллированной воды. Количество глюкозы (в %) при данном анализе вычисляют по формуле R = (a-b) ×0,009×υ1×100/g×υ2 где а — количество раствора Na2S2O3, пошедшее на титрование в контрольном опыте; b — количество раствора Na2S2O3, пошедшее на титрование в рабочем опыте; 0,009 — титр глюкозы по иоду (молекулярная масса глюкозы 180, эквивалент 90, титр 0,1 н. раствора 0,009); υ1 - объем растворения навески; g — навеска; υ2 — объем, взятый для титрования [17]. Данный эксперимент проводился в пяти повторениях. Для качественного определения содержания аскорбиновой кислоты использовались следующие методы. Реакция с калия перманганатом [8]. К 1 мл реактива раствора перманганата калия по каплям добавляют извлечение из сырья, содержащее аскорбиновую кислоту. Наблюдают обесцвечивание раствора перманганата калия вследствие восстановления марганца до Mn 2+: Реакция с раствором йода. К 1 мл реактива раствора йода по каплям добавляют извлечение из сырья, содержащее аскорбиновую кислоту. Наблюдают обесцвечивание раствора [8]: Наличие следов алкалоидов определялось методом извлечения. Растения грубо измельчают, помещают в пробирку, заливают 1% раствором соляной кислоты так, чтобы кислота покрывала весь материал (1:10) и нагревают до начала кипения. До охлаждения жидкость фильтруют через фильтр и испытывают на присутствие в нем алкалоидов, для чего 1-2 капли фильтрата помещают при помощи стеклянной палочки на часовое стекло, рядом с ним наносят каплю реактива Вагнера и осторожно наклоняя стекло, обе капли соединяют. При слиянии капель, в случае присутствия алкалоидов жидкость мутнеет, а затем происходит выпадение трудно растворимых солей алкалоидов с реактивом Вагнера (осадок бурого цвета) [8]. Сапонины исследовались реакцией Лафона. К 2 мл водного настоя прибавляют 1 мл концентрированной серной кислоты, 1 мл этилового спирта и 10 капель 10% раствора сернокислого железа. При нагревании появляется сине-зеленое окрашивание [8]. Для получения вытяжки пигментов из высших растений навеску листьев массой до 0,5 г тщательно растирают в сухой фарфоровой ступке с небольшим количеством спирта. Ступку и пестик ополоснуть небольшим количеством растворителя. Измельчённый растительный материал фильтруют через складчатый бумажный фильтр. Для окончательной экстракции пигмента общий объём экстракта в пробирке доводят до 5 мл. Для расчёта концентрации хлорофилла в вытяжке пигментов определяют оптическую плотность вытяжки на электрофотокалориметре при длинах волн, соответствующих максимумам поглощения определяемых пигментов в данном растворителе: λ = 663, l кюв. = 1 см. Х (%) = 1,3×m×100/V×D×l, где Х (%) – содержание хлорофилла; m – масса навески, г; V – объем вытяжки, мл; D – оптическая плотность; l – толщина кюветы [23, 11]. Определение общей кислотности растения проводилось по следующей методике. Свежие или консервированные плоды, ягоды и овощи измельчают на терке и после тщательного перемешивания отвешивают на весах ВЛТК-500 в тарированной фарфоровой чашке 25 г мезги. Навеску без потерь смывают дистиллированное водой в мерную колбу вместимостью 250 см3. Удобнее всего пользоваться колбой Штифта. Объем жидкости в колбе доводят дистиллированной водой примерно до 150 см3 и колбу устанавливают в водяную баню, где температуру поддерживают на уровне 80°С. Экстракцию органических кислот проводят выдерживанием колбы в водяной бане в течение 30 мин при перемешивании содержимого колбы через каждые 5 мин. Затем содержимое колбы охлаждают (можно под струей холодной воды) и объем доводят до черты дистиллированной водой. Колбу закрывают пробкой, тщательно перемешивают содержимое и фильтруют через фильтр или вату; 50 см3 фильтрата пипеткой переносят в стакан или коническую колбу вместимостью 250—300 см3 и титруют в присутствии 3— 4 капель индикатора (фенолфталеина или комбиниронянного) 0,1 н. раствором NaOH до изменения окраски. Фенолфталеин при рН 8,2 изменяет окраску в фиолетовую, а смешанный индикатор при рН 7 дает фиолетово-синее окрашивание с переходом в зеленую при щелочной реакции титруемого раствора. При титровании темноокрашенных растворов завершение титрования устанавливают по изменению окраски синей лакмусовой бумажки от капли титруемого раствора. Если лакмусовая бумага не окрасится в красный цвет от капли фильтрата, титрование считается законченным. В кислой среде синяя лакмусовая бумажка окрашивается в красный цвет. Содержание органических кислот (в мг на 100 г плодов и овощей) находят по формуле: X = a×T×6,7×V1 /H×V2, где а - количество 0,1 н. щелочи на титрование, см3; Т — титр 0,1 н. щелочи; Н — навеска исследуемого материала, мг; V1 — общий объем вытяжки, см3 ; V2— объем фильтрата на титрование, см3; 6,7 — коэффициент для перевода кислот на яблочную. Для выражения кислотности в процентах расчет проводят по формуле: X = a×T×0,0067×V1 ×100 /H×V2 Обозначения те же, за исключением того, что навеска вещества, взятого для анализа, дана в г [21]. Было рассмотрено влияние стимуляторов роста растений на содержание альдоз (глюкозы) в Eichornia crassipes. В качестве стимулятора роста использовалась янтарная кислота. Растения в одинаковом количестве и одновременно обрабатывались стимулятором, параллельно фиксировались контрольные образцы. Действие янтарной кислоты длилось 45 дней, после чего проводилось иодометрическое определение альдоз (глюкозы) по Вильштеру и Шудлю, колориметрическое измерение оптической плотности окрашенного раствора хлорофилла на ФЭКе в контрольных образцах и изучаемых.
|
||
Последнее изменение этой страницы: 2016-04-08; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.210.12.229 (0.01 с.) |