Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Адаптации к засушливым условиям у растений и животных

Поиск

(по Н. Грину и др., 1993)

 

Адаптация Примеры
Уменьшение потери воды
Листья превращены в иглы или колючки Погруженные устьица Листья свернуты в цилиндр Толстая восковая кутикула   Толстый стебель с большим отношением объема к поверхности Опушенные листья Сбрасывание листьев при засухе Устьица открыты ночью и закрыты днем Эффективная фиксация СО2 ночью при не полностью открытых устьицах Выделение азота в виде мочевой кислоты Удлиненная петля Генле в почках   Ткани выносливы к высоким температурам из-за уменьшения потоотделения или транспирации Животные прячутся в норах   Дыхательные отверстия прикрыты клапанами Cactaceae, Euphorbiaceae (молочаи), хвойные деревья Pinus, Ammophila Ammophila Листья большинства ксерофитов, насекомые     Cactaceae, Euphorbiaceae («суккуленты») Многие альпийские растения Fouguieria splendens Crassulaceae (толстенковые)     С-4 — растения, например Zea mays   Насекомые, птицы и некоторые рептилии Пустынные млекопитающие, например верблюд, пустынная крыса Многие пустынные растения, верблюд   Многие мелкие пустынные млекопитающие, например пустынная крыса Многие насекомые
Увеличение поглощения воды
Обширная поверхностная корневая система и глубоко проникающие корни Длинные корни   Прорытие ходов к воде Некоторые Cactaceae, например Opuntia и Euphorbiaceae Многие альпийские растения, например эдельвейс (Leontopodium alpinum) Термиты
Запасание воды  
В слизистых клетках и в клеточных стенках В специализированны мочевом пузыре В виде жира (вода — продукт окисления) Cactaceae и Euphorbiaceae Пустынная лягушка Пустынная крыса  
Физиологическая устойчивость к потере воды  
При видимом обезвоживании сохраняется жизнеспособность   Потеря значительной части массы тела и быстрое ее восстановление при наличии доступной воды Некоторые эпифитные папоротники и плауны, многие мохообразные и лишайники, осока Сагех physoides Lumbricus terrestris (теряет до 70% массы), верблюд (теряет до 30%)  
       

 

 

Окончане табл. 4.9

 

Адаптация Примеры
«Уклонение от проблемы»
Переживают неблагоприятный период в виде семян Переживают неблагоприятный период в виде луковиц и клубней Распространения семян в расчете на то, что некоторые из них попадут в благоприятные условия Поведенческие реакции избегания   Летняя спячка в слизистом коконе   Эшшольция калифорнийская   Некоторые лилии   Различные растения   Почвенные организмы, например клещи, дождевые черви Дождевые черви, двоякодышащие рыбы.
     

 

Совместное действие температуры

И влажности

 

Рассмотрение отдельных факторов среды — это не конечная цель экологического исследования, а способ подойти к сложным экологическим проблемам, дать сравнительную оценку важности различных факторов, действующих совместно в реальных экосистемах.

Температура и влажность являются ведущими климатическими факторами и тесно взаимосвязаны между собой (рис. 4.19).

 

Рис. 4.19. Влияние температуры на относительную влажность

воздуха (по Б. Небелу, 1993)

При неизменном количестве воды в воздухе относительная влажность увеличивается, когда температура падает. Если воздух охлаждается до температуры ниже точки водонасыщения (100%), происходит конденсация и выпадают осадки. При нагревании его относительная влажность падает. Сочетание температуры и влажности часто играет решающую роль в распределении растительности и животных. Взаимодействие температуры и влажности зависит не только от относительной, но и от абсолютной их величины. Например, температура оказывает более выраженное влияние на организмы в условиях влажности, близкой к критической, т. е. если влажность очень велика или очень мала. Влажность также играет более критическую роль при температуре, близкой к предельным значениям. Отсюда одни и те же виды организмов в различных географических зонах предпочитают разные местообитания. Так, по правилу предварения, установленному В. В. Алехиным (1951) для растительности, широко распространенные виды на юге произрастают на северных склонах, а на севере встречаются только на южных (рис. 4.20).

 

Рис. 4.20. Схема правила предварения (по В. В. Алехину, 1951):

1 — северный вид, обитающий на плакоре, на юге переходящий на склоны северной экспозиции и в балки; 2 — южный вид, на севере встречающийся на наиболее прогреваемых склонах южной экспозиции

 

Для животных выявлены принципы смены местообитания (Г. Я. Бей-Биенко, 1961) и принцип смены ярусов (М. С. Гиляров, 1970), где мезофильные виды в центре ареала, на севере его выбирают более сухие, а на юге — более влажные места или переходят от наземного образа жизни к подземному, как многие насекомые-фитофаги. Чем слабее проявляется влияние климата в конкретных местообитаниях, которые выбирает вид, тем больше их способность обитать в разных климатических условиях. Вид выбирает сочетание факторов, наиболее соответствующих его экологической валентности, путем смены местообитания, и таким образом преодолевает климатические рубежи.

Взаимосвязь температуры и влажности хорошо отражают кли-мадиаграммы, составленные по способу Вальтера-Госсена, на которых в определенных масштабах сопоставлен годовой ход температуры воздуха с ходом выпадения осадков (рис. 4.21).

 

Рис. 4.21. Климадиаграмма по Вальтеру-Госсену для Одессы

(по Г. Вальтеру, 1968):

а — высота над уровнем моря; б — число лет наблюдений за температурой (первая цифра) и осадками (вторая цифра); в — средняя годовая температура; г — средняя годовая сумма осадков в мм: д — средний суточный минимум самого холодного месяца; е — абсолютный минимум; ж — средний суточный максимум самого теплого месяца; з — абсолютный максимум; и — кривая средних месячных температур; к — кривая средних месячных сумм осадков (соотношение 10°=20 мм); л — то же (соотношение 10°=30 мм); м — засушливый период; н — полузасушливый период; о — влажное время года; п — месяцы со средним суточным минимумом температуры ниже 0°С; р — месяцы с абсолютным минимумом температуры ниже 0°С, с — безморозный период. По оси абсцисс — месяцы

 

Климадиаграммы можно построить для отдельных лет, а расположив последовательно и непрерывно одну за другой, получить климатограмму. На климатограммах легко прослеживаются экстремально сухие или экстремально холодные годы, что является весьма полезным для определения пригодности комбинаций температуры и влажности в районах предполагаемой интродукции растений или промысловых диких животных.

Атмосфера

 

Как уже было отмечено ранее, наша планета Земля отличается от других планет наличием воздушной оболочки, атмосферы, атмосферного воздуха. Атмосферный воздух — смесь различных газов. В его составе 78,08% азота, 20,9% кислорода, 0,93% аргона, 0,03% углекислого газа, других газов (гелий, метан, неон, ксенон, родон и др.) около 0,01%.

Значение атмосферного воздуха для живых организмов огромно и разнообразно. Это источник кислорода для дыхания и углекислоты для фотосинтеза. Он защищает живые организмы от вредных космических излучений, способствует сохранению тепла на Земле.

Атмосфера — важная часть экосферы, с которой она связана биогеохимическими циклами, включающими газообразные компоненты. Это такие, как круговороты углерода, азота, кислорода и воды. Большое значение имеют и физические свойства атмосферы. Так, воздух оказывает лишь незначительное сопротивление движению и не может служить опорой для наземных организмов, что непосредственно сказалось на их строении. Вместе с тем некоторые группы животных стали использовать полет как способ передвижения. Особо следует отметить, что в атмосфере постоянно происходит циркуляция воздушных масс, энергию которой поставляет Солнце (рис. 4.22).

 

Рис. 4.22. Упрощенная схема общей циркуляции

воздушных масс атмосферы:

1 – теплый воздух; 2 – охлажденный воздух; 3 – зоны высокого давления; СЕ – пассаты; СД – доминирующие юго-западные ветры; GH – полярные северо-восточные ветры

 

Результатом циркуляции является перераспределение водяных паров, так как атмосфера захватывает их в одном месте (где вода испаряется), переносит и отдает в другом месте (где выпадают осадки). Если же в атмосферу поступают газы, в том числе загрязняющие, такие, как двуокись серы в промышленных районах, то система атмосферной циркуляции перераспределит их и они выпадут в других местах, растворенные в дождевой воде (рис. 4.23).

Ветер, взаимодействуя с другими факторами окружающей среды, может оказывать влияние на развитие растительности, в первую очередь на деревья, растущие на открытых местах. Обычно это приводит к задержке их роста и искривлению с наветренной стороны.

Ветер играет важную роль в распространении спор, семян и т. п., расширяя возможности распространения неподвижных организмов — растений, грибов и некоторых бактерий. Ветер может оказывать влияние и на миграцию летающих животных.

 

 

Рис. 4.23. Гидрологический цикл и накопление воды

(по Е. А. Криксунову и др., 1995)

 

Еще одна особенность атмосферы — это ее давление, которое уменьшается с высотой. Эволюция живых организмов на нашей планете происходила при атмосферном давлении 760 мм ртутного столба на уровне моря, и оно считается «нормальным». С увеличением высоты, например при восхождении людей в горы, от недостаточной насыщенности крови кислородом может наступить состояние гипоксии или аноксии. Возникает оно вследствие того, что с возрастанием высоты над уровнем моря парциальное давление кислорода, так же как и других газов, содержащихся в атмосферном воздухе, падает. На высоте 5450 м атмосферное давление в два раза меньше, чем на уровне моря. И хотя воздух содержит здесь столько же процентов кислорода, концентрация его на единицу объема вдвое меньше.

У растений в этих условиях возрастает транспирация, что потребовало выработки адаптации для сохранения воды, как, например, у многих альпийских растений.

Топография

Топография (рельеф) относится к орографическим факторам и тесно связана с другими абиотическими факторами, хотя и не принадлежащими к таким прямодействующим экологическим факторам, как свет, тепло, вода и почва. Главным топографическим (орографическим) фактором является высота. С высотой снижаются средние температуры, увеличивается суточный перепад температур, возрастают количество осадков, скорость ветра и интенсивность радиации, понижаются атмосферное давление и концентрация газов. Так, повышение уровня местности на каждые 100 м сопровождается уменьшением температуры воздуха примерно на 0,6°С.

В зависимости от величины форм топографию или рельеф подразделяют на несколько порядков: макрорельеф (горы, межгорные впадины, низменности), мезорельеф (холмы, овраги, гряды, карстовые воронки, степные «блюдца» и др.) и микрорельеф (мелкие западинки, неровности, приствольные повышения и др.), Все это оказывает влияние на растения и животных. В результате обычным явлением стала вертикальная зональность (рис. 4.24).

 

Рис. 4.24. Схема, показывающая соответствие между последовательными

вертикальными и горизонтальными растительными зонами:

1 — тропическая, зона (зона тропических лесов); 2 — умеренная зона (зона лиственных и хвойных лесов); 3 – альпийская зона (зона травянистой растительности, мхов и лишайников); 4 - полярная зона (зона снегов и льдов)

 

Горные цепи могут служить климатическими барьерами. Влажный воздух охлаждается, поднимаясь над горами, что приводит к выпадению большого количества осадков на наветренных склонах.

На подветренной стороне горного хребта образуется так называемая «дождевая тень», воздух здесь суше, выпадает меньше осадков, создаются пустынные условия, так как воздух, опускаясь, нагревается и вбирает в себя влагу из почвы.

Это влияет на живые организмы. Для большинства позвоночных верхняя граница жизни около 6,0 км. Снижение давления с высотой влечет за собой уменьшение обеспеченности кислородом и обезвоживание животных за счет увеличения частоты дыхания. Несколько более выносливы членистоногие (ногохвостки, клещи, пауки), которые могут встречаться на ледниках, выше границы растительности. Для высокогорных растений характерен приземистый рост. Во всех высокогорных областях земного шара преобладают низкорослые стелющиеся кустарники и кустарнички (рис. 4.25), подушковидные и розеточные многолетние травы, дерновидные злаки и осоки, мхи и лишайники.

 

Рис. 4.25. Можжевельник туркестанский - на склонах хребта

Терекей-Алатау (по И. Г. Серебрякову, 1955):

А – древовидная форма (лугово-лесной пояс, 2900 м над уровнем моря); Б – стланник (субальпийский пояс, 3200 м над уровнем моря)

 

Характерная морфологическая черта многих высокогорных приземистых растений, например кустарников и кустарничков, — значительное преобладание подземной массы по сравнению с надземной.

Низкорослость высокогорных растений связывают с адаптацией к низким температурам и с формообразующим действием радиации, богатой коротковолновой частью спектра, тормозящей ростовые процессы. В анатомическом строении высокогорных растений есть ряд черт, которые способствуют защите от избыточной радиации, связаны с характером водного режима и обмена веществ в высокогорьях: утолщение покровных тканей, придающих устойчивость к сильным ветрам и т. д. У растений, живущих на скалах, наблюдаются изменения в сторону ксероморфоза: уменьшаются размеры клеток и возрастает плотность тканей, увеличивается число устьиц на единицу поверхности листа, уменьшаются их размеры. У видов же, обитающих вблизи талых вод или других источников увлажнения, листья крупнее и ксероморфные черты выражены слабее.

Низкие температуры и сильная освещенность способствуют образованию больших количеств антоциана, отсюда глубокие, насыщенные тона окраски цветов. Сочетание небольших листьев при малом росте и крупных яркоокрашенных цветков — характерная черта многих альпийских растений.

Характерная черта физиологии и биохимии высокогорных растений — повышение интенсивности окислительно-восстановительных процессов, увеличение активности участвующих в них ферментов (каталазы, пероксидазы и др.), более низкие, чем у равнинных растений, температурные оптимумы их работы.

Дыхание высокогорных растений устойчиво к неблагоприятным воздействиям, как правило, наблюдается усиление дыхания, а следовательно, и увеличение энергии, освобождающейся при распаде сложных соединений. По современным представлениям, это является одной из физиологических основ приспособленности растений к крайним условиям.

При поднятии в горы меняется и сезонное развитие растений. Так, весной, поднимаясь в горы, можно видеть развитие одного и того же вида в следующей последовательности: в низкогорном поясе — цветение, в среднем — бутонизацию, еще выше — начало вегетации и, наконец, только появление после таяния снега. Осенью же при подъеме в горы наблюдаем ускоренное наступление осенних фенофаз: расцвечивание листвы, листопад, отмирание надземных частей. Четко прослеживается сокращение у растений вегетационного периода.

Наряду с высотой над уровнем моря большое значение для живых организмов имеют экспозиция и крутизна склонов.

В северном полушарии склоны гор, обращенные на юг, получают больше солнечного света, интенсивность света и температура здесь выше, чем на дне долины и на склонах северной экспозиции. В южном же полушарии наблюдается обратная ситуация. Это оказывает поразительное влияние как на естественную растительность, так и на угодья, используемые человеком. Например, широкие расщелины между скалами над Дунаем в восточной Сербии, защищенные от ветров и испытывающие увлажняющее действие реки, способствовали сохранению многих редких, реликтовых и эндемических видов растений, среди них «медвежий орешник» —Corylus colurna, грецкий орех — Juglans regia, сирень (дикая форма) — Syringa vulgaris и др.

Для крутых склонов характерны быстрый дренаж и смывание почв. Здесь почвы обычно маломощные и более сухие, с ксероморфной растительностью. При уклоне, превышающем 35°, почва не образуется, растительность отсутствует, создаются осыпи из рыхлого материала.

Прочие физические факторы

 

К прочим физическим факторам, окружающим живые организмы на Земле, относят главным образом атмосферное электричество, огонь, шум, магнитное поле Земли, ионизирующие излучения.

Атмосферное электричество действует на живые организмы посредством разрядов и ионизации воздуха. Например, известно губительное действие молний при попадании в крупные деревья, животных. Есть определенные закономерности в частоте повреждаемости молнией различных древесных пород. Это связывают как с формой кроны, так и с электропроводящими свойствами коры, например с быстротой ее намокания. По частоте поражения молниями на первом месте стоят ель и сосна, затем береза, а осина повреждается значительно реже. Молнии вызывают механическое повреждение деревьев (расщепление стволов, трещины), выпадение крупных деревьев, тем самым оказывают влияние на структуру древостоя, зачастую являются причиной возникновения пожаров. Около 21% пожаров лесных угодий России происходит по вине молний, при грозах.

Роль атмосферных электрических разрядов состоит и в том, что они во время грозы из атмосферного азота и кислорода синтезируют окиси азота, которые с дождевыми водами попадают в почву и накапливаются в ней от 4 до 10 кг в год на 1 гектар в форме селитры и азотной кислоты.

Действие ионизации воздуха на человека, животных и растения еще недостаточно изучено. Вместе с тем достоверно установлена прямая зависимость между самочувствием человека и присутствием легких ионов в воздухе. Высказывается мнение, что ионизация воздуха служит материальной способности некоторых растений «предсказывать погоду» (снижение фотосинтеза и дыхания, закрывание устьиц и прекращение транспирации перед грозой задолго до падения атмосферного давления). Экспериментально доказано влияние слабого тока на корневые системы некоторых растений. Например, у саженцев ели и сосны фитомасса увеличивается на 100—120%. Установлена возможность с помощью воздействия направленного электрического поля регулировать темпы перемещения веществ внутри дерева, а следовательно, и темпы его роста.

Огонь в жизни растений и животных — довольно редкий, но весьма действенный фактор. Пожары, например, в лесах, как уже было отмечено ранее, могут возникать как естественным путем от ударов молний, так и по вине человека, его деятельности. Поэтому огонь относят как к естественным экологическим факторам, так и антропогенным.

Серьезные последствия имеют не только верховые лесные пожары, охватывающие весь древостой, но и низовые, которые губят напочвенную растительность, подрост, нижние ветви деревьев, нередко корневую систему. Гибнут животные. Кроме повреждений непосредственно от огня пожары вызывают ухудшение состояния древостоя. Снижается прирост. Ослабленные деревья в большей степени заражаются грибами, такими, как древесная гниль, легко проникающими через «огневые раны», подвергаются нападению насекомых-вредителей.

Лесные пожары сильно изменяют условия обитания растений и животных. Во время пожара в хвойных лесах температура доходит до 800—900°С, в почве на глубине 3,5 см — до 95°С, на глубине 7см — до 70"С. В сухих лесах практически полностью сгорает подстилка и почвенный гумус. Минеральные частицы верхнего слоя почвы спекаются. Образуются комки или стекловидная корка, трудно проницаемые для воздуха, воды и корней. Почва сильно уплотняется. От сгорания органических кислот и освобождения оснований кислотность почвы резко уменьшается, в верхних горизонтах значение рН нередко доходит до сильнощелочного. От высокой температуры верхние слои почвы стерилизуются — гибнет почвенная микрофлора, а в более глубоких — изменяется ее состав, происходит обеднение наиболее важными для жизнедеятельности растений группами. Так, в почвах хвойных лесов после пожаров преобладает деятельность микроорганизмов, вызывающих масляно-кислое брожение и денитрификацию.

После лесных пожаров происходит резкое изменение условий в растительных сообществах (осветление, изменение температурного и других факторов микроклимата), особенно когда произошло уничтожение древостоя, и ведет к тому, что в дальнейшем гари заселяются видами живых организмов с различными адаптивными особенностями, помогающими перенести пожар и выжить на гарях. Так, у растений это глубокие подземные почки возобновления, способность семян долго сохраняться в почве и выдерживать высокую температуру, выносливость к заморозкам, сильной освещенности и т. д.

Возобновление растительности на гарях имеет свои особенности. На выжженных местах из спор, занесенных ветром, появляются мхи-пионеры, через три — пять лет из мхов наиболее обилен «пожарный мох» — Funaria hygrometrica. Из высших растений быстро заселяет гари иван-чай (Chamaenerion angustifolion). Постепенное заселение гарей происходит и древесной растительностью — ивой, березой, осиной и др. (рис. 4.26).

Рис. 4.26. Влияние пожара на растительность древесных «колков»

Зауральской лесостепи (по Д. Ф. Федюнину, 1953):

А — до пожара; Б — после пожара; В — через год после пожара; 1 — ива; 2 — береза, 3 — осина

 

Степные пожары («палы») могут быть более или менее регулярными, связанными с деятельностью человека, и играть существенную роль в жизни живых организмов, иногда и положительную для регулирования роста, возобновления, отбора видов и поддержания постоянного состава травостоя.

Шум как естественный экологический фактор для живых организмов несуществен, но может оказывать и существенное воздействие с усилением антропогенных воздействий (шум, возникающий при работе транспортных средств, оборудования промышленных и бытовых предприятий, вентиляционных и газотурбинных установок и др.).

Величину звуковых давлений изменяют и нормируют в децибелах. Весь диапазон слышимых человеком звуков укладывается в 150 дБ. На нашей планете жизнь организмов проходит в мире звуков. Например, орган слуха человека приспособлен к некоторым постоянным или повторяющимся шумам (слуховая адаптация). Человек теряет работоспособность без привычных шумов. Сильный шум еще более отрицательно сказывается на здоровье человека. У людей, живущих и работающих в неблагоприятных акустических условиях, имеются признаки изменения функционального состояния центральной нервной и сердечно-сосудистой систем.

Исследованиями доказано воздействие шума и на растительные организмы. Так, растения близ аэродромов, с которых непрерывно стартуют реактивные самолеты, испытывают угнетение роста и даже отмечается исчезновение отдельных видов. В целом ряде научных работ показано угнетающее действие шума (около 100 дБ с частотой звука от 31,5 до 90 тыс. Гц) на растения табака, где обнаруживали снижение интенсивности роста листьев, в первую очередь у молодых растений. Привлекает внимание ученых и действие ритмических звуков на растения. Исследования по изучению действия музыки на растения (кукуруза, тыква, петуния, циния, календула), проведенные в 1969 г. американским музыкантом и певицей Д. Ретолэк, показали, что на музыку Баха и индийские музыкальные мелодии растения отзывались положительно. Их габитус, сухой вес биомассы были наибольшими по сравнению с контролем. И что самое удивительное, так это то, что их стебли прямо-таки тянулись к источнику этих звуков. В то же время на рок-музыку и непрерывные барабанные ритмы зеленые растения отвечали уменьшением размеров листьев и корней, снижением массы, и все они отклонялись от источника звука, как будто бы хотели уйти от губительного действия музыки (рис. 4.27).

Рис. 4.27. Вид растений после действия разной музыки:

А — индийские мелодии (Р. Шанкар); Б — музыка И.-С. Баха; В — рок-музыка (опыты Д. Ретолэк, 1969)

Растения, подобно людям, реагируют на музыку как целостный живой организм. Их чувствительными «нервными» проводниками, по мнению ряда ученых, являются флоэмные пучки, меристема и возбудимые клетки, расположенные в разных частях растения, связанные между собой биоэлектрическими процессами. Вероятно, этот факт — одна из причин сходства реакции на музыку у растений, животных и человека.

Магнитное поле Земли. Наша планета Земля обладает магнитными свойствами. Стрелка компаса всегда ориентируется по магнитному меридиану, указывая одним концом на север, другим — на юг. МагнитологГпоказали, что для создания наблюдаемого геомагнитного поля в центре Земли необходимо поместить гигантский цилиндрический магнит диаметром 200 км и длиной 4000 км. Ось земного магнита расположена под углом 1,5" к оси вращения Земли, поэтому магнитные полюса не совпадают с географическими. Со временем магнитные полюса меняют свое положение. Установлено, что северный магнитный полюс за сутки перемещается по поверхности Земли на 20,5 м, или 7,5 км в год, а Южный — на 30 м (11 км в год). Как у всякого магнита, магнитные силовые линии Земли выходят из одного полюса и через околоземное пространство замыкаются в другом полюсе. За счет этого явления около Земли создается магнитосфера (рис. 4.28).

 

 

Рис. 4.28. Меридиональные сечения магнитосферы Земли:

1 — солнечный ветер; 2 — ударный фронт; 3 — магнитная полость; 4 — магнитопауза; 5 — верхняя граница магнитосферной щели; 6 — плазменная мантия; 7 — внешний радиационный пояс; 8 — внутренний радиационный пояс, или плазмосфера; 9 — нейтральный слой; 10 — плазменный слой

 

 

Она задерживает потоки солнечных заряженных частиц, называемых плазмой, или солнечным ветром, не пропуская их к поверхности планеты. Солнечный ветер как бы огибает Землю и смещается на ночную сторону, вытягивая, в свою очередь, и магнитные силовые линии в этом же направлении. Деформация магнитных силовых линий связана с тем, что потоки солнечной плазмы несут с собой как бы «вмороженное» магнитное поле, которое и взаимодействует с магнитосферой Земли. За последние 600 тыс. лет палеомагнитологи зафиксировали 12 эпох инверсии геомагнитного поля (табл. 4.10).

Таблица 4.10



Поделиться:


Последнее изменение этой страницы: 2016-04-20; просмотров: 797; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.147.78.249 (0.011 с.)