Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Генетические процессы в популяцияхСодержание книги
Поиск на нашем сайте
Начало генетического изучения популяций положила работа В. Иогансена «О наследовании в популяциях и чистых линиях», опубликованная в 1903 г., где экспериментальным путем была доказана эффективность действия отбора в гетерогенной смеси генотипов (все природные популяции). Была наглядно продемонстрирована неэффективность действия отбора в чистых линиях — генотипически однородном (гомозиготном) потомстве, исходно получаемом от одной самоопыляющейся или самооплодотворяющейся особи. В настоящее время известно, что все природные популяции гетерогенны и насыщены мутациями. Генетическая гетерогенность любой популяции при отсутствии давления внешних факторов должна быть неизменной, находиться в определенном равновесии. А. В. Яблоков, А. Г. Юсупов (1998) приводят расчеты на двух примерах, впервые сделанные Г. Харди (1908). Предположим, что в популяции число форм гомозиготных по разным аллелям одного гена (АА и аа) одинаково. Если особи — носители данных аллелей совершенно свободно скрещиваются друг с другом, то возможны следующие комбинации:
Цифры показывают, что в данном поколении в популяции будут возникать гомозиготы АА и аа с частотой по 0,25, а гетерозиготы Аа — с частотой 0,50. Это же соотношение сохранится и в следующем поколении: частота гамет с рецессивным аллелем а составит 0,5 (0,25 от гомозигот аа+0,25 от гетеро-зигот Аа), также как и частота гамет с доминантным аллелем А (0,25 от гомозигот АА+0,25 от гетерозигот Аа). Это же соотношение сохранится во всех следующих поколениях, если не будет нарушено каким-либо внешним давлением. Определенно, в подавляющем большинстве случаев в популяции встречается разное число гомозигот АА и аа. Разберем пример, когда частота аллелей данного гена в популяции будет 0,7 а, 0,ЗА:
Следовательно, в потомстве на 100 зигот будет 9 гомозигот АА, 49 гомозигот аа и 42 гетерозиготы Аа. В следующем поколении гаметы с аллелем А будут возникать с частотой 0,3 (0,09 от гомозигот АА+0,21 от гетерозигот Аа), а гаметы с аллелем а будут возникать опять-таки с частотой 0,7 (0,49 от гомозигот аа+0,21 от гетерозигот Аа). Как и в первом примере, это соотношение сохранится в каждой последующей генерации. Если частоту встречаемости одного аллеля данного гена определить как q, то частота альтернативного аллеля того же гена может быть определена как 1—q. В потомстве свободно скрещивающихся особей должны быть следующие отношения таких аллелей:
При суммировании это дает: или Эта формула носит название формулы Харди—Вайнберга и позволяет рассчитывать относительную частоту генотипов и феноти пов в популяции. Так, предположим, что в популяции каких-либо жуков обнаружены красные формы с частотой 25% (или 0,25) и черные с частотой 75% (или 0,75); черный цвет определяется доминантным аллелем А, а красный — рецессивным аллелем а. При этом частота встречаемости генотипов аа составит (1 —q)2 = 0,2 5, а частота встречаемости аллеля а составит Согласно той же формуле частота доминантного аллеля А составит 1—0,5 = 0,5, а частота гомозиготных доминантных генотипов АА составит в популяции q2 = 0,52 = 0,25. Итак, при анализе природных совокупностей особей (популяций) необходимо различать понятия: частота гена (количественное соотношение аллелей одного какого-либо локуса), частота генотипа (количественное соотношение разных генотипов) и частота фенотипа (количественное соотношение разных фенотипов). Формула Харди—Вайнберга пригодна лишь для предельно упрощенной ситуации, для идеальной бесконечно большой популяции (иногда ее называют «менделевской») и при отсутствии давления каких-либо факторов. Кроме того, как известно, на частоту фенотипов оказывает влияние не только частота данного аллеля, но и такие его свойства, как доминантность, рецессивность, пенетрантность и экспрессивность. Таким образом, при анализе природных популяций данная формула применима лишь с большими оговорками. Существование двух (или более) генетически различных форм в популяции в состоянии длительного равновесия в таких соотношениях, что частоту даже наиболее редкой формы нельзя объяснить только повторными мутациями, называется полиморфизмом. В качестве примера полиморфизма можно привести три формы цветков у примулы (Primula vulgaris), рис. 9.8. Рис. 9.8. Три формы цветков у примулы (Primula vulgaris), из Ф. Шеппарда, 1970
В природных популяциях примулы (Primula vulgaris) всегда есть особи с длинным пестиком и короткими пыльниками (А), длинными пыльниками и коротким пестиком (Б) и одинаковыми по длине пыльниками и пестиком (В). Самоопыление возможно только у цветов типа В. Гетеростилия способствует перекрестному оплодотворению. Полиморфизм по механизму возникновения и поддержания разделяется на две большие группы: гетерозиготный и адаптационный. Гетерозиготный полиморфизм устанавливается в результате давления на популяцию естественного отбора, положительно отбирающего гетерозигот. Адаптационный полиморфизм — это две или несколько генетически различных форм внутри популяции, подвергающихся положительному отбору в разных экологических условиях. В качестве примера можно привести адаптационный полиморфизм в популяции двухточечной тлевой (божьей) коровки Adalia bipunctata (рис. 9.9).
Рис. 9.9. Адаптивный полиморфизм в популяции тлевых (божьих) коровок Adalia bipunctata: I — процентное содержание черной и красной форм при весеннем (В) и осеннем (О) сборах; II — частота доминантного гена А (черная окраска) в популяциях весной и осенью каждого года (в%) (по Н. В. Тимофееву-Ресовскому и Ю. М. Свирежеву, 1965)
На протяжении 10 лет в изучении популяции тлевой коровки осенью — при уходе на зимовку — черных форм было от 50 до 70%, а весной — при выходе из зимовки — от 30 до 45%. Красных форм осенью было меньше 50%, а весной — больше. Красные формы, как было установлено, лучше переносят в зимний период холод, а черные — интенсивнее размножаются летом. Отсюда отбор направлен на сохранение большего числа красных жуков зимой и черных — летом. Разнонаправленное давление отбора в отдельные периоды жизни популяции способствует выработке устойчивого адаптационного полиморфизма. Положение о генетическом единстве популяции является одним из наиболее важных выводов популяционной генетики: любая популяция представляет сложную генетическую систему, находящуюся в динамическом равновесии.
|
|||||||||||||||||||||||||
Последнее изменение этой страницы: 2016-04-20; просмотров: 364; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.149.254.229 (0.009 с.) |