Стационарное состояние живых тд систем, его отличие от тд равновесия; баланс энтропии и свободной энергии. Условия перехода живых систем на новый стационарный уровень. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Стационарное состояние живых тд систем, его отличие от тд равновесия; баланс энтропии и свободной энергии. Условия перехода живых систем на новый стационарный уровень.



(+ см вопрос 17)

Стационарное сотояние:

Зависит от 3-х параметров: -S (энтропия), -U (своб. E), -t (время).

Стац. сост. – сост., когда параметры системы (U, S) с теч. времени остаются неизменными, но происходит обмен в-вом и Е, т.е. сост. сист. при кот. не происх. изм. ТД параметров.

Изолированные сист.: ∆S=0 или >0.

Для равновесного сост. S стремится к мах, U=0. Стац. сост. отличается тем, что S ≠ мах, а является постоянной величиной, S=const, U не равняется 0, U=const. Ежесекундный прирост энтропии стремится к min. Любая живая система может находиться только в стац. сост. Если достигнуто состояние ТД равновесия - это уже не живая система. Качество стационарного состояния может быть различным.

В открытых системах:

S состоит из двух показателей.

Si – внутри самой сист., S - самой системы, Se – внешняя среда.

dS=dSi+dSe (d – это ∆ - это изменение)

Когда dSe > dSi и dSe < 0, тогда dSe < 0 – «нек» энтропия, негативная, в эволюц. плане деградирует система, напр. паразиты.

В случае изомерной живой системы - она не обменивается Е и в-вом, т.е. только dS=dSe

Прирост S - необратимость протекания процесса.

dSe<0: возможно 3 ситуации

1.Приток внешней энтропии отрицателен и по модулю превышает изменения внутренней Si dS<0

нервный импульс.

2. dSe<0, по мoдyлю=dSi

dS=O

Характерно для стационарного состояния системы dS=dSi+dSe=O

3. dSe<0 и по мoдyлю <dSi. dS>0.

Состоянию ТД равновесия - характерно мах значение S (S=max), U=0, т.е. Е, которая расходуется на совершение А.

Сходство: стац. и равновесное состояния не зависят от времени.

Отличия стац. сост. от равновесия (из конспекта):

1) своб. Е (∆G) в стац. сост. есть величина постоянная во времени и не равна 0. В ТД равн. ∆G=const, но ∆G =0 => открытые сист., если вывести из стац. сост. могут совершать работу; при ТД равновесии не способны совершать работу.

2) энтропия. В стац. сост. =const, но она не max. (∆G) ∆S ≠ max = const.

3)!!! в стац. сост. проявляется кинетический параметр (фактор) (изменение энтропии во времени) dS/dt = dSi/dt + dSe/dt.

Стационарное состояние:

* постоянный обмен энергией с окружающей средой

* постоянно тратится свободная энергия на поддержание состояния

* т/д потенциалы постоянны, G и F не равны 0

* энтропия постоянна, но не максимальна

* градиенты присутствуют

Термодинамическое равновесие

* отсутствует поток вещества и энергии в окружающую среду и обратно

* на поддержание этого состояния не затрачивается свободная энергия

* работа способности системы равна 0, т/д потенциалы равны 0

* энтропия максимальна

* в системе отсутствуют градиенты

Переход на новый стац. уровень:

2 пути: 1) «овершот» - по нему переходят живые организмы при изм внеш. усл. (приспособление). График.

Нижняя стрелочка – это старый стац. уровень.

Верхняя стрелочка – это новый стац. уровень.

2) «ложный старт» - усиление или уменьшение О2, выращивание лука с О2 и без. График. С О2 – аэробный распад углеродов. Без О2 – обмен в-в переходит на анаэробный путь. А если потом снова дать О2 – то получится график 2 (то что обведено кружочком – там осущ-ся уничтожение продуктов анаэробного пути). Пример для чела: пока не расщепится молочная к-та осуществлять работу дальше нельзя.

17. Теорема Пригожина и направленность эволюции биосистем. Энтропия и биологический прогресс.

(+ см вопрос 16)

Стац. сост. хар-ся min ежесекундным приростом энтропии (благодаря этому происходит эволюция).

Теорема: при постоянных внеш. усл. в системе, находящейся вблизи положения ТД равновесия в стац. сост., скорость возрастания энтропии, за счёт необходимости внутр. процессов, принимает постоянное минимальное значение отличное от нуля.

Или: В стационарных состояниях при фиксированных внешних параметрах локальная продукция энтропии в открытой т/д системе стремится к минимальному значению.

Энтропия – мера рассеивания свободной энергии, следовательно любая открытая т/д система в стационарном состоянии стремится к минимальному рассеиванию свободной энергии. Если в силу причин система отклонилась от стационарного состояния, то вследствие стремления системы к минимальной энтропии, в ней возникают внутренние изменения, возвращающие ее в стационарное состояние.

Величина, кот это всё характеризует:

β= T* (dS/dt), где β – диссипативная фукнкция. β>0, min. С этим связан Критерий эволюции открытых систем: ∆β/dt < 0

Механизмы саморегуляции систем

Функционируют по принципу обратной связи. Обратная связь – это понятие, обозначающее влияние выходного сигнала системы на ее рабочие параметры. Различают положительную и отрицательную. "–" чаще встречается в биосистемах, направлена на снижение влияния выходного сигнала на рабочие параметры системы. "+" усиливает влияние выходного сигнала, в результате чего система может выходить из данного состояния.

Гомеостаз – постоянство многих параметров.

 



Поделиться:


Последнее изменение этой страницы: 2016-04-07; просмотров: 635; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 13.59.82.167 (0.008 с.)