Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Молекулярные механизмы мышечного сокращения, его регуляция.

Поиск

В основе сокращения мышц лежит взаимное перемещение двух систем нитей, образованных актином и миозином. АТФ гидролизуется в активном центре, расположенном в головках миозина. Гидролиз сопровождается изменением ориентации головок миозина и перемещением нитей актина. Регуляция сокращения обеспечивается специальными Са-связывающими белками, расположенными на нитях актина или миозина. В основе сокращения мышц практически всех типов лежит перемещение двух систем белковых нитей (филаментов), построенных в основном из актина и миозина.

Для высокоэффективного преобразования энергии АТФ в механическую работу мышцы должны обладать строго упорядоченной структурой.

Строение и свойства актина. Мономеры актина (их часто называют G-актином, то есть глобулярным актином) могут взаимодействовать друг с другом, образуя так называемый фибриллярный (или F-актин). Процесс полимеризации можно инициировать повысив концентрацию одно- или двухвалентных катионов или добавив специальные белки. Процесс полимеризации становится возможным потому, что мономеры актина могут узнавать друг друга и образовывать межмолекулярные контакты. Полимеризованный актин внешне похож на две скрученные друг относительно друга нитки бус, где каждая бусина представляет собой мономер актина. Процесс полимеризации актина строго упорядочен, и мономеры актина упаковываются в полимер только в определенной ориентации. Тот конец полимера, где скорость полимеризации больше, называют плюс-концом, а противоположный конец полимера обозначают как минус-конец.

Актин является уникальным строительным материалом, широко используемым клеткой для построения различных элементов цитоскелета и сократительного аппарата. Есть белки, связывающиеся с мономерным актином (например, профилин). Эти белки, находясь в комплексе с глобулярным актином, препятствуют его полимеризации. Есть специальные белки, которые, как ножницы, разрезают уже сформировавшиеся нити актина на более короткие фрагменты. Некоторые белки преимущественно связываются и формируют шапочку ("кепируют") на плюс-конце полимерного актина. Другие белки кепируют минус-конец актина. Существуют белки, которые могут сшивать уже сформировавшиеся нити актина.

Все нити актина в саркомере имеют постоянную длину и правильную ориентацию, при этом плюс-концы филаментов располагаются в Z-диске, а минус-концы - в центральной части саркомера. Вследствие такой упаковки нити актина, расположенные в левой и правой частях саркомера, имеют противоположную направленность.

Строение и свойства миозина. В состав молекулы миозина скелетных мышц входят шесть полипептидных цепей - две так называемые тяжелые цепи миозина и четыре легкие цепи миозина (ЛЦМ). Эти цепи прочно ассоциированы друг с другом (нековалентными связями) и образуют единый ансамбль, который собственно и является молекулой миозина.

Тяжелые цепи миозина имеют большую молекулярную массу и сильно асимметричную структуру. У каждой тяжелой цепи есть длинный спирализованный хвост и маленькая компактная грушевидная головка. Спирализованные хвосты тяжелых цепей миозина скручены между собой наподобие каната. Этот канат обладает довольно высокой жесткостью, и поэтому хвост молекулы миозина образуют палочкообразные структуры. В нескольких местах жесткая структура хвоста нарушена. В этих местах располагаются так называемые шарнирные участки, обеспечивающие подвижность отдельных частей молекулы миозина. Шарнирные участки легко подвергаются расщеплению под действием протеолитических (гидролитических) ферментов, что приводит к образованию фрагментов, сохраняющих определенные свойства неповрежденной молекулы миозина.

В области шейки, то есть при переходе грушевидной головки тяжелой цепи миозина в спиральный хвост, располагаются короткие легкие цепи миозина. С каждой головкой тяжелой цепи миозина связаны одна регуляторная и одна существенная легкая цепь миозина. Обе легкие цепи миозина тем или иным способом влияют на способность миозина взаимодействовать с актином и участвуют в регуляции мышечного сокращения.

Палочкообразные хвосты могут слипаться друг с другом за счет электростатических взаимодействий. При этом молекулы миозина могут располагаться либо параллельно, либо антипараллельно друг относительно друга.

Хвосты миозина скелетных мышц могут упаковываться как в параллельном, так и в антипараллельном направлении. Комбинация параллельной и антипараллельной упаковок приводит к формированию так называемых биполярных (то есть двухполюсных) филаментов миозина. Половина молекул миозина повернута своими головами в одну сторону, а вторая половина - в другую сторону. Биполярный миозиновый филамент располагается в центральной части саркомера.

Главной "моторной" частью миозина скелетных мышц является головка тяжелой цепи миозина вместе со связанной с ней легкими цепями миозина. Головки миозина могут дотягиваться до нитей актина и контактировать с ними. При замыкании таких контактов образуются так называемые поперечные мостики, которые собственно генерируют тянущее усилие и обеспечивают скольжение нитей актина относительно миозина.

Рассмотрим цикл гидролиза АТФ и перемещение головки по актину. В исходном состоянии головка миозина не насыщена АТФ, актинсвязывающие центры сближены и головка прочно взаимодействует с актином. При связывании АТФ в активном центре "пасть" раскрывается, актинсвязывающие участки удаляются друг от друга, прочность связи миозина с актином ослабевает и головка диссоциирует от нити актина. Гидролиз АТФ в активном центре диссоциировавшей от актина головки миозина приводит к закрыванию щели активного центра. После гидролиза АТФ до АДФ и неорганического фосфата шейка занимает положение, перпендикулярное длинной оси нити актина. После всех этих событий головка миозина вновь оказывается способной взаимодействовать с актином. Образование комплекса с актином вызывает структурные изменения в головке миозина. Эти изменения позволяют выбросить из активного центра миозина неорганический фосфат, который образовался в ходе гидролиза АТФ. Головка миозина проталкивает нить актина на шаг вперед. После этого из активного центра выбрасывается другой продукт реакции, АДФ. Цикл замыкается, и головка переходит в исходное состояние.

Механизмы регуляции мышечного сокращения. Ионы Са2 + являются сигналом для начала мышечного сокращения.

Миозиновый тип регуляции сократительной активности. Простейший способ миозиновой регуляции описан для некоторых мышц моллюсков. Миозин моллюсков по своему составу не отличается от миозина скелетных мышц позвоночных. Считается, что при отсутствии Са2 + легкие цепи обернуты вокруг шарнирного участка тяжелой цепи миозина. При этом подвижность шарнира сильно ограничена. Головка миозина не может совершать колебательных движений, она как бы заморожена в одном положении относительно ствола толстого филамента. Очевидно, что в таком состоянии головка не может осуществлять колебательные движения и вследствие этого не может перемещать нить актина. При связывании Са2 + происходят изменения структуры легких и тяжелых цепей миозина. Резко повышается подвижность в области шарнира. Теперь после гидролиза АТФ головка миозина может осуществлять колебательные движения и проталкивать нити актина относительно миозина.

Оказалось, что с миозиновыми филаментами гладких мышц связан специальный фермент. Этот фермент получил название "киназа легких цепей миозина" (КЛЦМ). В состоянии покоя при низкой концентрации Са2 + в цитоплазме киназа легких цепей миозина неактивна. Это связано с тем, что в структуре фермента есть специальный ингибиторный (блокирующий активность) участок. Ингибиторный участок попадает в активный центр фермента и, не давая возможности взаимодействовать с истинным субстратом, полностью блокирует активность фермента.

В цитоплазме гладких мышц есть специальный белок кальмодулин, содержащий в своей структуре четыре Са-связывающих центра. Связывание Са2 + вызывает изменения в структуре кальмодулина. Насыщенный Са2 + кальмодулин оказывается способным взаимодействовать с КЛЦМ. Посадка кальмодулина приводит к удалению ингибиторного участка из активного центра, и киназа легких цепей миозина как бы просыпается. Только после фосфорилирования легкой цепи миозин оказывается способным взаимодействовать с актином и начинается мышечное сокращение.

Актиновый механизм регуляции мышечного сокращения. Связанный с актином механизм регуляции сократительной активности характерен для поперечнополосатых скелетных мышц позвоночных и сердечной мышцы. Нити фибриллярного актина в скелетных и сердечных мышцах имеют вид двойной нитки бус. Нитки бус актина перекручены друг относительно друга, поэтому с двух сторон филамента образуются канавки. В глубине этих канавок размещается сильно спирализованный белок тропомиозин. Каждая молекула тропомиозина состоит из двух одинаковых (или очень похожих друг на друга) полипептидных цепей, которые перекручены. Располагаясь внутри канавки актина, палочкообразная молекула тропомиозина контактирует с семью мономерами актина.

На актиновом филаменте помимо тропомиозина располагается еще и тропониновый комплекс. В состоянии расслабления концентрация Са2 + в цитоплазме очень мала. Регуляторные центры тропонина С не насыщены Са2 +. Ингибиторный и С-концевой участки тропонина I взаимодействуют с актином и с помощью тропонина Т выталкивают тропомиозин из канавки на поверхность актина. До тех пор пока тропомиозин располагается на периферии канавки, доступность актина для головок миозина ограниченна. Контакт актина с миозином возможен, но площадь этого контакта мала, вследствие чего головка миозина не может переместиться по поверхности актина и не может генерировать тянущее усилие.

При повышении концентрации Са2 + в цитоплазме происходит насыщение регуляторных центров тропонина С. Тропонин С образует прочный комплекс с тропонином I. При этом ингибиторная и С-концевая части тропонина I диссоциируют от актина. Теперь ничто не удерживает тропомиозин на поверхности актина, и он закатывается на дно канавки. Такое перемещение тропомиозина увеличивает доступность актина для головок миозина, увеличивается площадь контакта актина с миозином, и головки миозина приобретают возможность не только контактировать с актином, но и прокатываться по его поверхности, генерируя при этом тянущее усилие.

 

 



Поделиться:


Последнее изменение этой страницы: 2016-04-07; просмотров: 363; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.144.242.20 (0.011 с.)