Методы расчета линейных электрических цепей



Мы поможем в написании ваших работ!


Мы поможем в написании ваших работ!



Мы поможем в написании ваших работ!


ЗНАЕТЕ ЛИ ВЫ?

Методы расчета линейных электрических цепей



Расчет цепей с использованием законов Кирхгофа

Законы Кирхгофа используют для нахождения токов в ветвях схемы. Обозначим число всех ветвей схемы через b, число ветвей, содержащих источники тока, через bИT, число узлов - у. В каждой ветви схемы течет свой ток. Так как токи в ветвях с источниками тока известны, то число неизвестных токов равняется (b - bИT). Перед тем как составлять уравнения, необходимо произвольно выбрать: а) положительные направления токов в ветвях и обозначить их на схеме; б) положительные направления обхода контуров для составления уравнений по второму закону Кирхгофа.

Чтобы получить линейно независимые уравнения, по первому закону Кирхгофа составляют число уравнений, равное числу узлов без единицы, т.е. у - 1. По второму закону Кирхгофа составляют число уравнений n , равное

n= b - bИT - (у - 1).

 

При записи линейно независимых уравнений по второму закону Кирхгофа стремятся, чтобы в каждый новый контур, для которого составляются уравнения, входила хотя бы одна новая ветвь, не вошедшая в предыдущие контуры, для которых уже записаны уравнения по второму закону Кирхгофа, т.е. число уравнений по второму закону Кирхгофа равно числу независимых контуров.

Пример 1. Найти токи в ветвях схемы рис. 1.13, в которой Е1 = 80 В, Е2 = 64В, R1= 6 Ом, R2 = 4 Ом, R3 = 3 Ом, R4= 10 Ом.

 

Рис. 1.13

Решение. Произвольно выбираем положительные направления тока в ветвях. В схеме рис. 1.13 b=3; bИТ=0; y=2.

Следовательно, по первому закону Кирхгофа можно составить только одно уравнение y-1=1:

.

По второму закону Кирхгофа составим два уравнения. Положительные направления обхода контуров выбираем по часовой стрелке.

 

Для контура R1E1R2E2

.

Знак плюс перед I1R1 взят потому, что направление тока совпадает с направлением обхода контура, а знак минус перед I2R2 потому, что направление I2 встречно обходу контура.

Для контура E2R2R3R4:

.

Совместное решение трех уравнений дает

I1 = 14 A, I2 = -15 A, I3 = -1 A.

В рассматриваемом примере отрицательными оказались токи I2 и I3, это следует понимать так, что в действительности токи I2 и I3 направлены в обратную сторону.

Метод контурных токов

При расчете методом контурных токов полагают, что в каждом независимом контуре схемы течет свой контурный ток. Уравнения составляют относительно контурных токов, после чего через них определяют токи ветвей.

Таким образом, метод контурных токов можно определить как метод расчета, в котором в качестве неизвестных принимают контурные токи. Число неизвестных в этом методе равно числу уравнений, составляемых для схемы по второму закону Кирхгофа. Преимуществом этого метода, по сравнению с методом на основе законов Кирхгофа, является меньшая вычислительная работа, так как в нем меньше уравнений.

Вывод основных расчетных уравнений проведем применительно к схеме рис. 1.14, содержащей два независимых контура. Положим, что в левом контуре по часовой стрелке течет контурный ток I11 , а в правой (также по часовой) - контурный ток I22. Для каждого из контуров составим уравнения по второму закону Кирхгофа. При этом учтем, что в смежной ветви (с сопротивлением Rs) течет сверху вниз ток I11 - I22. Направления обхода контуров примем также по часовой стрелке.

Для первого контура

 

или

. (1.24)

Для второго контура

 

или

. (1.25)

 

Рис. 1.14

 

В уравнении (1.24) множитель при токе I11, являющийся суммой сопротивлений первого контура, обозначим через R11, множитель при токе I22 (сопротивление смежной ветви, взятое со знаком минус), – через R12.

В уравнении (1.25) множитель при токе I22, являющийся суммой сопротивлений второго контура, обозначим через R22, множитель при токе I11 (сопротивление смежной ветви, взятое со знаком минус), – через R21.

 

Перепишем эти уравнения следующим образом:

 

Здесь

 

где R11 и R22 - полное или собственное сопротивление первого и второго контуров соответственно; E11 и Е22 - контурные ЭДС первого и второго контуров, равные алгебраической сумме ЭДС этих контуров; R12 = R21 -сопротивление смежной ветви между первым и вторым контуром, взятое со знаком минус, так как контурные токи по ветви протекают встречно.

Если в схеме больше контуров, например три, то система уравнений в общем виде выглядит следующим образом:

 

(1.26)

 

В результате решения системы уравнений (1.26) какой-либо один или несколько контурных токов могут оказаться отрицательными.

В ветвях, не являющихся смежными между соседними контурами, найденный контурный ток является истинным током ветви. В смежных ветвях через контурные токи определяются токи ветвей.

Если в электрической цепи имеется n независимых контуров, то число уравнений тоже равно n.

Общее решение системы n-уравнений относительно тока Ikk таково:

, (1.27)

где D - определитель системы.

.

Алгебраическое дополнение ∆km, получено из определителя ∆ путем вычеркивания k-го столбца и m-й строки и умножения полученного определителя на (-1)k + m.

Составлению уравнений по методу контурных токов для схем с источниками тока присущи некоторые особенности. В этом случае полагаем, что каждая ветвь с источником тока входит в контур, замыкающийся через ветви с источниками ЭДС и сопротивлениями, и что токи в этих контурах известны и равны токам соответствующих источников тока. Если для схемы рис. 1.15 принять, что контурный ток I11 = J течет согласно направлению часовой стрелки по первой и второй ветвям, а контурный ток I22 = I3 замыкается также по часовой стрелке по второй и третьей ветвям, то, согласно методу контурных токов, получим только одно уравнение с неизвестным током I22:

 

.

Отсюда и ток второй ветви I2=I11-I22=J-I22 .

E3
1

 

Рис. 1.15



Последнее изменение этой страницы: 2016-04-07; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.235.11.178 (0.009 с.)