Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Тема 7. Общие теоремы динамики (теорема об изменении количества движения; теорема об изменении кинетической энергии; вычисление работы; потенциальное силовое поле. Работа потенциальной силы).Содержание книги
Поиск на нашем сайте
Колебательное движение 7.1. Пружину с жёсткостью 140 Н/м сжали до длины 0,1 м и отпустили. Работа силы упругости при восстановлении пружины равно … Дж, если длина недеформированной пружины равна 0,2 м. Ответ: 0,7
7.2. Материальная точка массой m = 0,5 кг брошена с поверхности Земли с начальной скоростью v 0= 25 м/с и в положении М имеет скорость v = 15 м/с. Определить работу силы тяжести (Дж) при перемещении точки из положения М 0 в положение М. Ответ: – 100 7.3. Груз М весом Р = 20 Н, прикреплённый к невесомой нити длиной l = ОМ = 90 см, начинает двигаться из состояния покоя. Определить: 1) работу силы тяжести А (Р) на перемещении М1М2; 2) скорость v груза М, когда он займёт положение М2. Принять g = 10 м/с2. 1) = … (Дж), 2) = … (м/с). Ответы: 9*3 7.4. Груз М весом Р подвешен на невесомой нерастяжимой нити длиной l. В начальный момент времени груз находился в положении М1. Определить: 1) работу силы тяжести А (Р) на перемещении груза М1М2; 2) какую минимальную скорость v 1 необходимо сообщить грузу, чтобы он достиг положения М2. (Начальный угол наклона стержня 30о) Ответы: – 0,5*1 7.5. Матер. точка массы m = 2 кг перемещается в вертикальной плоскости Оху. Определить работу А ОМ (Дж) силы тяжести Р = mּg при перемещении матер. точки по дуге OM полуокружности радиуса R = 10 м (см. рис.). Ускорение свободного падения принять равным g = 9,8 м/с2. Результат вычисления округлить до ближайшего целого числа. А ОМ = … (Дж) Ответ: – 392 7.6. Матер. точка массы m = 2 кг перемещается в вертикальной плоскости Оху. Определить работу А ОМ (Дж) силы тяжести Р = mּg при перемещении матер. точки по дуге OM окружности радиуса R = 10 м (см. рис.). Ускорение свободного падения принять равным g = 9,8 м/с2. Результат вычисления округлить до ближайшего целого числа. А ОМ = … (Дж) Ответ: – 196 7.7. Матер. точка массы m движется в горизонтальной плоскости Oxy под действием силы, пропорциональной смещению точки от точки от центра О и направленной к этому центру , где - радиус-вектор точки, c = 20 Н/см. Вычислить работу А 12 силы при перемещении матер. точки из точки М 1 в точку М 2 (см. рис.); а = 8 см. А 12 = … (Дж). Ответ: 6,4 7.8. Матер. точка массы m движется в горизонтальной плоскости Oxy под действием силы, пропорциональной смещению точки от точки от центра О и направленной к этому центру , где - радиус-вектор точки, c = 20 Н/см. Вычислить работу А 12 силы при перемещении матер. точки из точки М 1 в точку М 2 (см. рис.); а = 10 см. А 12 = … (Дж). Ответ: – 10 7.9. Матер. точка массы m движется в горизонтальной плоскости Oxy под действием силы притяжения = – / r 3 к силовому центру О, убывающей по величине обратно пропорционально квадрату расстояния от точки до силового центра О, | F |= k / r 2, k = 200 (Н/м2). Вычислить работу А 12 силы при перемещении матер. точки из точки М 1 в точку М 2 (см. рис.); M 2 М 1 = a = 30 м, ОМ 2 = b = 40 м. А 12 = … (Дж). Ответ: 1 7.10. Матер. точка массы m движется по окружности радиуса r в поле центральной силы. Сила притяжения, убывающая обратно пропорционально квадрату расстояния, по модулю равна F (r) = , где k = const. (Центр окружности совпадает с силовым центром.) Определить значение скорости v точки при следующих числовых данных параметров: k = 16 м3/сек2 и r = 4 м. v = … (м/с). Ответ: 2
7.11. Матер. точка массы m движется по окружности радиуса r в поле центральной силы притяжения. Сила притяжения по модулю равна F (r) = c ּ r, где c = const. (Центр окружности совпадает с силовым центром.) Определить значение скорости v точки при следующих числовых данных параметров: m = 0,25 (кг), c = 100 (Н/м) и r = 0,2 (м). v = … (м/с). Ответ: 4 7.12. Матер. точка массы m движется по окружности радиуса r под действием центральной силы притяжения , постоянной по модулю (| | = F = const), действующей в области 0,01 м < r < 2 м. (Центр окружности совпадает с силовым центром.) Определить значение скорости v (м/с) точки при следующих числовых данных параметров: F = 1 (Н), m = 0,25 (кг), r = 1 (м). v = … (м/с). Ответ: 2.
7.13. Матер. точка массы m движется в горизонтальной плоскости Oxy под действием силы, пропорциональной смещению точки от точки от центра О и направленной к этому центру , где - радиус-вектор точки, c = 80 Н/см. Вычислить работу А 12 силы при перемещении матер. точки из точки М в точку О (см. рис.); а = 9 см, b = 12 см. А МО = … (Дж). Ответ: 90 7.14. Матер. точка массы m движется в горизонтальной плоскости Oxy под действием силы, пропорциональной смещению точки от точки от центра О и направленной к этому центру , где - радиус-вектор точки, c = 80 Н/см. Вычислить работу А 12 силы при перемещении матер. точки из точки О в точку М (см. рис.); а = 9 см, b = 12 см. А ОМ = … (Дж). Ответ: – 90 7.15. Матер. точка массы m движется в горизонтальной плоскости Oxy под действием силы, пропорциональной смещению точки от точки от центра О и направленной к этому центру , где - радиус-вектор точки, c = 80 Н/см. Вычислить работу А 12 силы при перемещении матер. точки из точки М 1 в точку М 2 (см. рис.); ОМ1 = b = 12 см, OM2 = a = 9 см. (Числовой результат определить с точностью до первого знака после запятой включительно.) А 12 = … (Дж). Ответ: 25,2 7.16. Искусственный спутник Земли движется по круговой орбите на высоте от поверхности Земли h, равной половине радиуса Земли (h = 0,5ּ R). Первая космическая скорость равна v косм1 = 7910 (м/с). Определить скорость v (м/с) спутника на обозначенной орбите. v = … (м/с). Ответ: 6459 7.17. На рис. изображена штанга, которая может вращаться вокруг горизонтальной оси шарнира О. Плечи штанги l 1 = 30 см и l 2 = 70 см. На концах штанги закреплены точечные грузы с массами m 1 = 8 кг и m 2 = 4 кг. Штанга совершает поворот вокруг оси О в вертикальной плоскости на угол 90о по часовой стрелке. Вычислить работу силы тяжести при этом повороте. Массой штанги пренебречь. Ускорение свободного падения принять равным g = 9,8 м/с2. А = … (Дж). (Результат вычисления округлить до первого знака после запятой включительно.) Ответ: 3,9 7.18. На рис. изображена штанга, которая может вращаться вокруг горизонтальной оси шарнира О. Плечи штанги l 1 = 40 см и l 2 = 70 см. На концах штанги закреплены точечные грузы с массами m 1 = 7 кг и m 2 = 4 кг. Штанга совершает поворот вокруг оси О в вертикальной плоскости на угол 90о против часовой стрелке. Вычислить работу силы тяжести при этом повороте. Массой штанги пренебречь. Ускорение свободного падения принять равным g = 9,8 м/с2. А = … (Дж). Ответ: 0 7.19. Груз массой m прикреплён к правому концу пружины, левый конец которой закреплён в стене. В начальном положении пружина не была деформирована. Ось x направлена вдоль оси пружины, причём начало отсчёта находится в правом конце не деформированной пружины. Проекция силы упругости пружины равна Fx = – cּx – b ּ x 3, где x – удлинение пружины; параметры c и b имеют следующие значения: c = 1000 Н/м, b = 4 Н/м3. Вычислить работу упругой силы пружины при перемещении груза на расстояние s = 1 м. А = … (Дж) Ответ: – 501 7.20 На двух одинаковых лёгких спиральных пружинках подвешены две гири, отношение масс которых m 1/ m 2 = 3. Гири получили толчки в вертикальном направлении и колеблются так, что амплитуда колебаний первого груза А 1 в 2 раза больше амплитуды колебаний А 2 второго груза. Как относится энергии их колебаний Е 1/ Е 2 ? Е 1/ Е 2 = … Ответ: 4 7.21. Дифференциальное уравнение движения материальной точки имеет вид 4ּ d 2 x/dt 2 + 12ּ dx/dt + c ּ x = 0. Определить максимальное значение коэффициента жёсткости с пружины, при котором движение будет апериодическим; с = … Отметьте правильный ответ. Ответ: 9 7.22. Дифференциальное уравнение движения материальной точки имеет вид d 2 x/dt 2+100ּ x = 15ּ sin 5 ּt. Определить амплитуду вынужденных колебаний А вынужд; (результат вычисления округлить с точностью до первого знака после запятой); А вынужд = …. Ответ: 0,2
7.23. Тело массой m = 0,1 кг движется прямолинейно по закону x = 2ּ sin (5 ּt) (м) под действием силы F. Определить наибольшее значение этой силы; | F | = …(H). Ответ: 5
7.24. Дифференциальное уравнение движения материальной точки имеет вид 2ּ d 2 x/dt 2 + b ּ dx/dt + 2ּ x = 0. Определить минимальное значение b min точки, при котором движение будет апериодическим: b min = … Ответ: 4 7.25. Дифференциальное уравнение движения материальной точки имеет вид d 2 x/dt 2+ 6ּ dx/dt + 25ּ x = 0. Определить условный период Т затухающих колебаний. Т = … (сек). Ответ: 2 π ּ0,25 7.26. Дифференциальное уравнение движения материальной точки имеет вид m ּ d 2 x/dt 2+2ּ dx/dt +5ּ x = 0. Определить максимальное значение массы m max точки, при котором движение будет апериодическим: m max = … (Результат вычисления определить с точностью до первого знака после запятой); Ответ: 0,2 7.27. Дифференциальное уравнение движения материальной точки имеет вид d 2 x/dt 2+8ּ dx/dt +25ּ x = 0. Определить, каким будет движение: равномерным, равноускоренным, колебательным или апериодическим. Отметьте правильный ответ. -: Равномерное -: Равноускоренное +: Колебательное -: Апериодическое
7.28. Дифференциальное уравнение движения материальной точки имеет вид 2ּ d 2 x/dt 2+8ּ dx/dt +7ּ x = 0. Определить, каким будет движение: равномерным, равноускоренным, колебательным или апериодическим. Отметьте правильный ответ. -: Равномерное -: Равноускоренное -: Колебательное +: Апериодическое 7.29. Груз массой m = 0,2 кг подвешен к пружине, коэффициентом жёсткости которой с = 20 Н/м, и выведен из состояния равновесия. Сила сопротивления движению R = - 4 ּv (Н). Определить, каким будет движение: равномерным, колебательным или апериодическим. Отметьте правильный ответ. -: Равномерное -: Равнозамедленное -: Колебательное +: Апериодическое
7.30. Дифференциальное уравнение движения материальной точки имеет вид 7ּ d 2 x/dt 2 + 28ּ dx/dt + c ּ x = 0. Определить наибольшее значение коэффициента жёсткости с пружины, при котором движение будет апериодическим; c = … Ответ: 28. 7.3I. Дифференциальное уравнение движения материальной точки имеет вид d 2 x/dt 2 + b ּ dx/dt + 100ּ x = 0. Определить минимальное значение b min точки, при котором движение будет апериодическим; b min = … Ответ: 20 7.32. Маятник представляет собой шарнирно соединённую со штативом лёгкую жёсткую спицу с закреплёнными на ней двумя небольшими по размерам грузами массы m каждый (см. рис.). Расстояния между точкой крепления О и верхним грузом и между грузами равны 0,5ּ l. Определить период колебаний. (g – ускорение свободного падения). Ответ: Т = 2 ּπּ 0,91 ּ 7.33. Тело массы m = 0,4 кг совершает колебания на пружине так, что наибольшее значение скорости v макс = 120 см/сек, наибольшее отклонение от положения равновесия x макс = 4 см Определить коэффициент жёсткости c (Н/м) пружины.
Ответ: 360 7.34. Через неподвижный блок с массой m 1 = 200 г перекинута нить, к концу которой подвешен груз массы m 2 = 390 г. Другой конец нити привязан к пружинке с закреплённым нижним концом (см. рис.). Коэффициент жёсткости пружины c = 100 (Н/м). Вычислить период колебаний груза Т (сек.). Нить не может скользить по поверхности блока; блок однородный цилиндр; трение в оси блока отсутствует. Ответ: 0,44 7.35. Груз, подвешенный к пружине, при медленном его опускании вызвал удлинение её на Δ l = 6 см. Определить период Т (сек.) собственных колебаний пружинного маятника. (g = 9,8 м/с2) Ответ: 0,49 7.36. Человек массы m = 60 кг переходит с носа на корму лодки. На какое расстояние по величине | s |переместится лодка длины l = 4 м, если её масса M = 140 кг? | s | = … (м). Ответ: 1,2 7.37. Колесо радиуса R = 0,5 м, массы m = 10 кг и моментом инерции относительно оси вращения J = 1,5 кгּм2 катится без скольжения по горизонтальной прямой под действием приложенной к нему силы F в центре масс С колеса горизонтально, F = 8 Н. Определить ускорение a C (м/с2) центра масс C колеса. a C = … Ответ: 0,5 7.38. Шкив 1 массы М = 10 кг и радиуса R = 0,3 м, вращаясь с угловой скоростью ω = 4,0 рад/с, поднимает груз 2 массы m = 15 кг. Определить модуль количества движения | Q | механизма; | Q | = … (кгּм/с). Ответ: 18 7.39. Масса каждого из тёх звеньев шарнирного параллелограмма ОАВС (ОА, АВ, СВ)равна 2 кг. Длина кривошипа ОА равна 0,5 м. Кривошип ОА вращается равномерно с угловой скоростью ω = 5 рад/с. Определить модуль количества движения | Q | механизма; | Q | = … (кгּм/с). Ответ: 10
7.44. Цилиндр 1 вращается с угловой скоростью ω = 20 рад/с. Его момент инерции относительно оси вращения Ј = 10 кгּм2, радиус r = 0,4 м. Груз 2 имеет массу m 2 = 2 кг. Определить модуль количества движения | Q | механизма; | Q | = … (кгּм/с). Ответ: 16 7.45. В кривошипно-шатунном механизме ОАВ, расположенном в горизонтальной плоскости, кривошип ОА и шатун АВ имеют каждый массу m = 2 кг, а ползун В имеет массу m /2 = 1 кг. Длина кривошипа OA l = 0,5 м, длина шатуна AB 2ּ l = 1,0 м. Угловая скорость кривошипа равна ω = 6 рад/с. Определить модуль количества движения | Q | механизма в тот момент, когда угол φ = π /2; | Q | = … (кгּм/с). Ответ: 2 7.46. В кривошипно-шатунном механизме ОАВ, расположенном в горизонтальной плоскости, кривошип ОА и шатун АВ имеют каждый массу m = 2 кг и длину l = 0,5 м, а ползун В имеет массу m /2 = 1 кг. Угловая скорость кривошипа равна ω = 6 рад/с. Определить модуль количества движения | Q | механизма в тот момент, когда угол α = 0; | Q | = … (кгּм/с). Ответ: 6
7.47. Сплошной однородный цилиндр 1 массы m 1 = 10 кг и радиуса r = 0,5 м вращается с угловой скоростью ω = 10 + 2ּ t (рад/сек). Груз 2 имеет массу m 2 = 20 кг. Определить модуль главного вектора внешних сил | F (e) | = … (Н), действующих на тело 2.
Ответ: 20 7.47. Поезд массы m = 600 тонн после прекращения тяги тепловоза останавливается под действием силы трения F тр = 0,2 МН (мега-ньютон) через время t = 45 сек. С какой скоростью v шёл поезд до момента прекращения тяги тепловоза? v = …(м/с) Ответ: 15
7.48. Масса платформы с орудием и боеприпасами составляет M = 20 тонн. С этой платформы, движущейся со скоростью u = 2,5 м/с, производится выстрел из орудия. Снаряд массы m = 25 кг вылетает из ствола орудия со скоростью v = 800 м/с (относительно орудия). Найти скорость платформы u 1 (м/с) непосредственно после выстрела, если направления движения платформы и выстрела совпадают. Ответ: 1,5 7.49. Масса платформы с орудием и боеприпасами составляет M = 20 тонн. С этой платформы, движущейся со скоростью u = 2,5 м/с, производится выстрел из орудия. Снаряд массы m = 25 кг вылетает из ствола орудия со скоростью v = 800 м/с (относительно орудия). Найти скорость платформы u 1 (м/с) непосредственно после выстрела, если направления движения платформы и выстрела противоположны. Ответ: 3,5 7.50. Ядро, летевшее со скоростью v = 200 м/с, разорвалось на два осколка с массами m 1 = 10 кг и m 2 = 5 кг. Скорость первого осколка v 1 = 250 м/с и направлена так же, как и скорость ядра до разрыва. Найти скорость v 2 второго (меньшего) осколка; v 2 = … (м/с). Ответ: 100 7.51. Кривошипно-ползунный механизм прикреплён к станине массы M, установленной на гладком горизонтальном фундаменте. Масса ползуна B механизма равна m, масса станины M = 4ּ m. Длины звеньев OA и AB: OA = l, AB = 2ּ l, их массами пренебречь. Кривошип вращается с постоянной угловой скоростью ω и при t = 0 угол φ = 0 и в этот момент скорость станины равна нулю. Определить максимальное значение v max скорости станины. Ответ: 0,20 ּωּl 7.52. Орудие, имеющее массу ствола М = 400 кг, стреляет в горизонтальном направлении. Масса снаряда m = 4 кг, его начальная скорость v = 500 м/с. При выстреле ствол откатывается на расстояние s = 40 см. Найти среднюю силу торможения F (кН), возникающую в механизме, тормозящем ствол. Ответ: 12,5 7.53. Тело массы M = 990 г лежит на горизонтальной поверхности. В него попадает пуля массы m = 10 г и застревает в нём. Скорость пули v = 600 м/с и направлена горизонтально. Какой путь s (м) пройдет тело до остановки? Коэффициент трения между телом и поверхностью k = 0,1. (g = 10 м/с2) Ответ: 18
7.54. Стержень представляет собой шарнирно соединённую со штативом лёгкую жёсткую спицу с закреплёнными на ней двумя небольшими по размерам грузами массы m каждый (см. рис.); расстояния между точкой крепления О и верхним грузом и между грузами равны l. Первоначально стержень был отклонён в верхнее вертикальное положение, а затем лёгким толчком был выведен из этого положения.(g – ускорение свободного падения). Определить угловую скорость ω стержня в момент прохождения им нижнего положения. Ответ: 1,55 ּ 7.55. Масса каждого из тёх звеньев шарнирного параллелограмма ОАВС (ОА, АВ, СВ)равна m = 2 кг. Длина кривошипа ОА равна 0,6 м. Кривошип ОА вращается равномерно с угловой скоростью ω = 10 рад/с. Момент инерции стержня ОА относительно шарнира О (или стержня СВ относительно шарнира С) равен J = (1/3)ּ m ּ(ОА)2 = (1/3)ּ m ּ(CB)2. Определить кинетическую энергию T механизма. T = … (Дж) Ответ: 60 7.56. Цилиндр 1 вращается с угловой скоростью ω = 10 рад/с. Его момент инерции относительно оси вращения Ј = 2 кгּм2, радиус r = 0,5 м. Груз 2 имеет массу m 2 = 10 кг. Определить кинетическую энергию T механизма; T = … (Дж) Ответ: 225 7.57. К концу троса, намотанного на барабан, прикреплён груз 1 массы m 1. К барабану ворота 2 радиуса r и массы m 2 приложен постоянный вращающий момент M. Барабан однородный диск. m 1 = m, m 2 = (2/9)ּ m. Определить ускорение тела 1. Ответ: 0,90 ּ 7.58. Дано: m 1, колесо массы m 2 – однородный цилиндр, причем m 2 = 8 ּm 1. Пренебрегая массой блока и каната, также проскальзыванием колеса и силой трения, определить ускорение груза 1. Ответ: 0,25 ּg 7.59. Дано: груз массы m 1, колесо массы m 2 – однородный цилиндр, причем m 2 = ּm 1. Пренебрегая массой блока и каната, также проскальзыванием колеса и силой трения в блоке, определить ускорение груза 1. Ответ: 0,30 ּg 7.60. Дано: масса груза m 1, угол α, каток массы m 2 – однородный цилиндр, причем m 2 = 1,6 ּm 1. Пренебрегая массой блока и каната, также проскальзыванием катка и силой трения в блоке, определить ускорение груза 1. Ответ: 0,50 ּgּsinα
“Нулевой” вариант заданий экзаменационных тестов ЦКТ Механике; 2013/2014 учебный год С т а т и к а
Тема 8. Основные понятия, аксиомы и основная теорема статики.
|
||||
Последнее изменение этой страницы: 2016-04-07; просмотров: 1033; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 13.59.82.60 (0.012 с.) |