III. Закрепление нового материала.



1. Решить № 304 (а; б) на доске и в тетрадях.

2. Решить № 305 с комментированием.

3. Решить задачу № 314 на доске и в тетрадях.

Решение.

1) (м) составляет шаг папы.

2) (м) составляет шаг сына.

значит, шаг сына короче.

Ответ: короче шаг сына.

4. Решить задачу № 316. Коллективно учащиеся разбирают решение задачи, а затем самостоятельно записывают решение в тетрадях.

Решение.

1) (м) одна седьмая часть трехметрового бревна.

2) (м) одна десятая часть четырехметрового бревна.

Ответ: длиннее часть трехметрового бревна.

5. Решить № 319 (а; б; ж; з) и № 321 (а; г) на доске и в тетрадях.

6. Решить № 321 (б; в) с комментированием.

7. Решить № 312 (объясняет учитель).

8. Повторение материала:

1) Решить № 352 (а). Повторить основное свойство дроби и признаки делимости чисел на 2, на 5, на 3, на 9.

2) Решить задачу № 356 (1).

Решение.

1) 600 · 0,5 = 300 (км) пролетит первый самолет за 0,5 ч.

2) 750 – 600 = 150 (км/ч) больше скорость второго самолета, чем первого.

3) 300 + 225 = 525 (км) на столько больше километров должен пролететь второй самолет.

4) 525 : 150 = 3,5 (ч) через столько часов второй самолет после своего вылета будет впереди на 225 км.

Ответ: через 3,5 ч.

IV. Итог урока.

1. Выучить правила из пункта 11.

2. Прочитать на странице 50 учебника текст «Говорите правильно».

Домашнее задание: изучить п. 11; решить № 359 (а; б; в), № 360 (а; д), № 361, № 373 (в).

Урок 2

Цели: упражнять учащихся в сравнении дробей, сложении и вычитании дробей с разными знаменателями; развивать логическое мышление учащихся.

Ход урока

I. Устная работа.

1. Проверить выборочно номера домашнего задания.

2. Решить № 346 (в) и № 351 (б).

II. Выполнение упражнений.

1. Решить № 304 (в; г) с комментированием.

2. Решить № 306 с комментированием.

3. Решить № 307 (а) на доске и в тетрадях.

4. Решить № 313 (самостоятельно).

5. Решить № 319 (в; г; д; k). Четверо учеников самостоятельно решают на доске, остальные в тетрадях, а потом проверяют решение.

6. Решить № 322 (а; в) на доске и в тетрадях.

Решение.

7. Решить задачу № 344 (решение объясняет учитель).

Решение.

Все поле составляет 1.

1) 1 : 6 = (часть) убирает за 1 день первый комбайн.

2) 1 : 4 = (часть) убирает за 1 день второй комбайн.

3) (часть) уберут за 1 день оба комбайна.

Ответ: части.

8. Выполнить задание № 318 на координатном луче.

9. Самостоятельно решить № 356 (2).

Решение.

1) 60 · 0,5 = 30 (км) проедет автобус за 0,5 ч.

2) 75 – 60 = 15 (км/ч) больше скорость легковой машины.

3) 30 + 45 = 75 (км) больше должна проехать легковая машина.

4) 75 : 15 = 5 (ч) через столько часов после своего выезда легковая машина будет впереди автобуса на 45 км.

Ответ: 5 ч.

10. Решить № 352 с комментированием.

Повторить признаки делимости на 10, на 2, на 3.

Решение.

НОК (8; 24; 9) = 72

III. Итог урока.

1. Повторить правило сравнения дробей.

2. Решить задачи:

а) Длина первой доски м, а длина второй доски – м. Какая из этих досок длиннее?

б) Оля уложила в ящик 15 кг яблок за 8 мин, Катя – 20 кг яблок за 11 мин. Кто из них работал быстрее?

Условия этих задач заранее записаны на доске; учитель привлекает к решению этих задач многих учащихся, выясняя степень усвоения ими материала, а решения задач учитель записывает на доске.

Домашнее задание:решить № 359 (г; д; е), № 360 (б; е), № 363, № 371.

Урок 3

Цели: способствовать развитию навыков сравнения дробей, сложения и вычитания дробей с разными знаменателями; закрепить знание нахождения наименьшего общего кратного чисел.

Ход урока

I. Устные упражнения.

1. Решить задание № 346 (в; г).

2. Укажите наибольшую дробь:

Найдем а) НОК (63; 315; 105) = 315.

3. Не приводя дроби к общему знаменателю, определите, какая из них меньше:

а)

II. Работа по учебнику.

1. Для сложения и вычитания дробей верны изученные ранее свойства этих действий. Они иногда помогают упрощать вычисления.

2. Разобрать решение примеров 4 и 5 на странице 49 учебника.

3. Устные упражнения: найти значение выражения:

III. Выполнение упражнений.

1. Решить № 330 (а), № 331 (а), № 332 (а) на доске и в тетрадях.

Решение.

2. Решить № 307 (б) с комментированием.

3. Решить задачу № 317.

Решение.

НОК (5; 9; 15) = 45.

На решение задачи Юра затратил урока, Нина – урока, а Миша – урока.

4. Решить задачу № 342 самостоятельно.

5. Решить № 322 (б; г) на доске и в тетрадях.

Решение.

6. Решить № 319 (е; и) самостоятельно (с проверкой).

7. Решить № 321 (д; е; ж) самостоятельно.

8. Решить № 327 (а; в) на доске и в тетрадях.

Решение.

9. Повторение ранее изученного материала. Самостоятельно решить № 348, а затем проверить решение по тетрадям.

Решение.

а) 0,72 – 0,62 = 0,49 – 0,36 = 0,13;

б) 32 – 17,5 = 27 – 17,5 = 9,5;

в) 0,52 · 8 = 0,25 · 8 = 2;

г) 2,6 : 0,13 = 2,6 : 0,001 = 260.

IV. Итог урока.

1. Повторить правило сравнения дробей.

2. Сравните

Домашнее задание: решить № 359 (ж; з), № 360 (в; г; з), № 369 (б), № 364, № 373 (г).

Урок 4

Цели: упражнять учащихся в сравнении, сложении и вычитании дробей; научить решать уравнения и задачи; проверить знания и умения учащихся в ходе самостоятельной работы.

Ход урока

I. Проверка домашнего задания.

1. Двое учащихся работают на доске, решая № 364 и № 369 (б).

2. С остальными учащимися устно решить № 347 (а).

3. Сравните:

4. Назвать дроби в том порядке, как они расположены на координатном луче:









Последнее изменение этой страницы: 2016-04-07; Нарушение авторского права страницы

infopedia.su не принадлежат авторские права, размещенных материалов. Все права принадлежать их авторам. Обратная связь - 54.162.10.211