Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Наличие локальных зон расплавления (проплавления) металлаСодержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Полезная информация о температурных режимах в различных зонах пожара может быть получена путем выявления мест расплавления тех или иных металлов, сплавов, а также стекла и некоторых других материалов. Необходимо обращать внимание и фиксировать в протоколе места расплавления алюминия и его сплавов (температура плавления 600-660°С), бронзы (880-1040°С), меди (1083°С), стали (1300-1400°С) и др. Необходимо, однако, иметь в виду, что так называемые проплавления в металле могут возникнуть и при температуре ниже температуры плавления. Возможно это, как минимум, по двум причинам: 1) локальный нагрев тонкого стального изделия (листа, проволоки и т.п.) приводит к образованию слоя окалины, соизмеримого по толщине с самим изделием. Окалина, не обладая достаточной механической прочностью, может выкрошиться, и на изделии после пожара обнаружится "дырка"; 2) растворение металла в металле. Расплавленный в ходе пожара более легкоплавкий металл при попадании на металл более тугоплавкий может привести к "растворению" последнего в расплаве первого металла. Причем происходит это при температуре, значительно ниже температуры плавления "тугоплавкого" металла. Такой процесс возможен, например, при попадании расплавленного алюминия на медь и ее сплавы. Происходит это за счет образования эвтектического сплава меди с алюминием. Точно такой же способностью растворяться в расплавленном алюминии обладает сталь. Конечным результатом протекания указанных реакций может быть проплавление (отверстие) в тонком стальном листе, в стенке стальной трубы и т.д. Учитывая, что расплавления и проплавления относительно тугоплавких металлов и сплавов (меди, а тем более стали) происходят на пожаре достаточно редко, сам факт их наличия должен быть зафиксирован, причина образования в каждом конкретном случае должна быть выяснена. Квалификационным признаком, позволяющим отличить такое отверстие от проплавления, возникшего, например, под действием электрической дуги, является характерный контур проплавления (в форме лужицы, потека) и тоненькая каемка алюминия, обычно сохраняющаяся по периметру отверстия. В неясных случаях фрагмент объекта с проплавлением подлежит изъятию и направлению на лабораторные исследования. Бетон и железобетон При нагреве в ходе пожара от температур 150-200°С и выше бетон и железобетон постоянно разрушаются - чем выше температура и длительность нагрева, тем больше. Происходит это вследствие постепенной дегидратации (удаления физически, а затем и химически связанной воды) цементного камня, неравномерного теплового расширения отдельных ингредиентов, входящих в состав бетона, и некоторых других процессов. Процесс разрушения бетона не очень хорошо заметен визуально вплоть до температур нагрева 700-800°С, когда процесс дегидратации полностью завершается и бетон просто начинает сыпаться. Тем не менее, есть признаки, достаточно просто выявляемые и характеризующие (весьма примерно) степень разрушения материала в ходе пожара. Это изменение тона звука при простукивании и образование трещин. Изменение тона звука при простукивании Изменение тона звука определяется простукиванием бетонных и железобетонных конструкций каким-либо массивным предметом. Бетон разрушается при нагревании, в нем появляются микротрещины, и тон звука меняется. Неповрежденный бетон имеет высокий и звонкий тон звука. С увеличением степени разрушения бетона тон становится глухим. Изменение в тональности звука особенно заметно при нагреве выше 600-700 °С, когда бетон практически полностью дегидратирован и потому разрушен. При простукивании бетона, нагретого до различных температур, можно также заметить, как снижаются с увеличением температуры его прочностные свойства. Нагрев более 500°С приводит к тому, что часть сечения образца при ударе средней силы откалывается. При нагреве более 600 °С молоток при ударе сминает бетон на поверхности образца [23-25]. Визуальная фиксация трещин бетонных конструкций Микротрещины в тяжелом бетоне начинают образовываться при 300-400 °С. При 500 °С трещины увеличиваются настолько, что становятся видны невооруженным глазом (ширина трещин не менее 0,1 мм). При 600-800 °С ширина раскрытия трещин достигает 0,5-1,0 мм. При 700-800 °С образуются визуально наблюдаемые разрушения на бетоне, в частности, отслоение защитного слоя на железобетонных изделиях [23-25]. Отмеченная выше зависимость интенсивности трещинообразования и ширины раскрытия трещин от температуры нагрева позволяет оценивать примерную температуру нагрева конструкций в тех или иных зонах пожарища. Конечно, речь может идти об очень приблизительной, ориентировочной оценке, т.к. ширина раскрытия трещин зависит от множества факторов, в том числе скорости нагрева и охлаждения при тушении. Более точное и достоверное определение температуры нагрева бетона и железобетона в ходе пожара, а также выявление зон термических поражений на бетонных и железобетонных конструкциях возможно специальными полевыми и лабораторными методами (см. разд. 12.1). Для лабораторных исследований необходим отбор проб в соответствии с рекомендациями разд. 5.3. Кирпичная кладка Кирпичи, изготовленные обжиговым методом (красный, специальный огнеупорный), при тепловом воздействии в ходе пожара не меняют свой состав, структуру и свойства. Поэтому изучение и описание их состояния обычно не представляют интереса для расследования пожара. Лишь резкое охлаждение при тушении может привести к растрескиванию указанных изделий, что, однако, также мало интересно с экспертной точки зрения. Силикатный (белый) кирпич, а также цементный камень кладочного раствора между кирпичами (в том числе красными и огнеупорными) должны быть исследованы визуально. При нагревании, с увеличением температуры нагрева у них происходит трещинообразование и снижение механической прочности аналогично бетону (см. выше), что и должно выявляться в ходе осмотра места пожара. При необходимости пробы силикатного кирпича и цементного камня кладочного раствора могут отбираться для лабораторных исследований с целью выявления, аналогично бетону, зон термических поражений и определения очага пожара. Штукатурка Штукатурка обычно бывает цементно-песчаная либо известково-песчаная. Первая отличается большей прочностью, однако под воздействием тепла пожара обе претерпевают примерно одинаковые изменения [23]. Цвет штукатурки В литературе отмечается, что цементно-песчаная штукатурка при нагреве до 400-600°С приобретает розовый оттенок; при нагреве до 800-900°С - бледно-серый цвет. Более часто наблюдаемым признаком на более прогретых зонах стен и потолка является светлый цвет штукатурки на фоне более темного в менее прогретых зонах. Причина такого явления, вероятно, в следующем. На пожаре при тушении водой стены намокают; там, где стена нагревалась более длительно, интенсивно и, таким образом, прогрета сильнее, она, отдавая тепло после пожара, просыхает быстрее. В результате при осмотре места пожара на более прогретых участках штукатурка выглядит светлее. Это обстоятельство должно быть отражено в протоколе осмотра места пожара и по возможности зафиксировано фото - и видео съемкой. Отслоение штукатурки Известно, что в зонах достаточно длительного и интенсивного нагрева штукатурка отваливается. Правда, не всегда это происходит именно в зоне ее экстремальных термических поражений. Достаточно часто такое случается, когда в помещение подается вода на тушение. Гидравлический удар и резкое охлаждение приводят к тому, что штукатурка может отвалиться не там, где была выше температура ее нагрева, а там, куда в первую очередь попала вода из пожарного ствола. Тем не менее, зоны, где штукатурка отслоилась, обязательно нужно фиксировать при осмотре места пожара и иметь их в виду при поисках очага. Особенно интересны зоны, где штукатурка обвалилась, начиная снизу, от пола. Температуру прогрева штукатурки в ходе пожара можно определить специальным лабораторным методом, для чего отбираются пробы (см. разд. 5.3). Материалы на основе гипса На основе гипса изготавливается гипсокартон (сухая штукатурка), фасонные изделия, декоративные, звукоизоляционные плиты, перегородки и блоки пазогребневой конструкции. При нагреве в ходе пожара изделия из гипса растрескиваются и, в конечном счете, могут рассыпаться. При осмотре места пожара отмечается местонахождение, форма и размеры зон, где слой гипса обрушился. Учитывая, что это могло произойти как в результате более интенсивного и длительного нагрева гипса в данной зоне, так и в результате резкого охлаждения водой при тушении (подаваемой к тому же под давлением), в дальнейшем необходимо будет выяснить направления подачи стволов на тушение данного помещения. Ориентировочная температура нагрева конструкции из гипса может быть определена с помощью данных, приведенных в табл. 4.4. Таблица 4.4 Термические поражения гипсовой штукатурки при различных температурах [23]
Но гораздо эффективнее определять степень термического поражения и ориентировочную температуру нагрева материала не по визуальным данным, а по результатам исследования с помощью специальных приборов и оборудования. Для этого в интересующих исследователя зонах отбирают пробы гипса (5-10 г на глубину 3-5 мм), которые после соответствующего оформления направляются на лабораторные исследования. Стекло Разрушение стекол на пожаре (прежде всего, имеется в виду оконное остекление) может происходить по нескольким причинам: - вследствие нагрева и растрескивания в ходе пожара; - при механическом разрушении до пожара или непосредственно перед пожаром (в частности, при проникновении постороннего лица или забросе внутрь постороннего предмета, в том числе источника зажигания); - при механическом разрушении в ходе пожара за счет падающих предметов; - при взрыве внутри помещения до или в ходе пожара; - при повышении давления внутри помещения в результате протекания чисто пожарных процессов - "общей вспышки" или вспышки газообразных продуктов неполного сгорания. Для того чтобы при необходимости можно было выявить причину (механизм) разрушения стекол, осколки необходимо осмотреть и результаты осмотра зафиксировать в протоколе. Во-первых, нужно посмотреть, закопчены ли стекла, лежащие внутри склада, или просто испачканы пожарным мусором. Закопчение на стеклах является признаком того, что во время пожара они какое-то время еще были в оконных переплетах, а разрушение произошло уже в ходе пожара. Необходимо помнить, что на пожаре стекла при нагревании выше 300 °С начинают разрушаться и выпадать преимущественно в сторону действия источника тепла. То есть при горении внутри помещения стекла будут падать внутрь, и это может быть ошибочно принято за признак разбивания стекол от удара снаружи. После взрыва, предшествующего пожару, стекла чистые и находятся снаружи помещения; чем больше сила взрыва, тем дальше. Исключением являются объемные взрывы, происходящие при утечке газа и испарении горючей жидкости, - при этих взрывах стекла находят внутри помещения. В случае необходимости уточнения причины разрушения конкретного стекла его следует изъять для экспертного исследования. На осколках стекла образуются радиальные и концентрические трещины и другие характерные разрушения, рельеф граней которых позволяет определить, с какой стороны ударили по стеклу или надавили на него, имело ли место механическое воздействие, давление взрыва или разрушение вследствие температурных градиентов. При изъятии стекол нужно помнить, что на них могут быть пальцевые отпечатки. Копоть Отложения копоти на конструкциях и предметах должны быть осмотрены в целях определения границ зон закопчения, расположения и геометрических параметров зон закопчения и зон выгорания копоти, примерной оценки интенсивности закопчения (толщины слоя копоти) на различных участках. Уносимые конвективным потоком продукты сгорания по мере удаления от очага остывают, а содержащиеся в них твердые частицы сажи и конденсирующиеся в жидкую фазу продукты осаждаются на вертикальных и горизонтальных поверхностях, образуя наслоения копоти. Но на поверхности конструкций и оборудования в ходе дальнейшего развития горения она остается только до температуры 600-630°С, после чего выгорает. Поэтому ближе к очагу копоти иногда может быть меньше, а дальше - больше (естественно, до определенных пределов). Над очагом пожара и вторичными очагами копоть часто выгорает локальными пятнами. Эти пятна часто сохраняются в ходе дальнейшего развития горения - конструкция (потолок, стена) в очаговой зоне прогрета хорошо, а копоть лучше оседает на относительно более холодных, нежели на "горячих" участках. Зоны выгорания копоти обязательно фиксируются в протоколе осмотра (словесное описание, фото -, видеосъемка). Отложения копоти могут быть исследованы инструментальным методом (см. разд. 12.4).
|
||||||||||||
Последнее изменение этой страницы: 2017-01-28; просмотров: 659; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.133.145.168 (0.012 с.) |