Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Разделение аминокислот с помощью ионообменной хроматографииСодержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Смесь аминокислот, полученных кислотным гидролизом белков, разделяют в колонке с ка-тионообменной смолой. Такая синтетическая смола содержит прочно связанные с ней отрицательно заряженные группы (например, остатки сульфоновой кислоты ~S03~), к которым присоединены ионы Na+ ( В катионообменник вносят смесь аминокислот в кислой среде (рН 3,0), где аминокислоты в основном представляют катионы, т.е. несут положительный заряд. Положительно заряженные аминокислоты присоединяются к отрицательно заряженным частицам смолы. Чем больше суммарный заряд аминокислоты, тем прочнее её связь со смолой. Так, аминокислоты лизин, аргинин и гистидин наиболее прочно связываются с катионообменником, а аспарагиновая и глу-таминовая кислоты — наиболее слабо. Высвобождение аминокислот из колонки осуществляют вымыванием (элюированием) их буферным раствором с увеличивающейся ионной силой (т.е. с увеличением концентрации NaCl) и рН. При увеличении рН аминокислоты теряют протон, в результате уменьшается их положительный заряд, а следовательно и прочность связи с отрицательно заряженными частицами смолы. Каждая аминокислота выходит из колонки при определённом значении рН и ионной силы. Со-бирая с нижнего конца колонки раствор (элюат) в виде небольших порций, можно получить фракции, содержащие отдельные аминокислоты.
4): Азотометрические методы основаны на определении количества белкового азота, образующегося при разрушении аминокислот, входящих в состав белков.. В методе Кьельдаля, азот, содержащийся в составе белков, окисляют до иона аммония и его количество определяют титрованием точным раствором соляной кислоты. Кроме того, ион аммония может быть определен реактивом Несслера, манометрическим методом после превращения иона аммония в молекулярный азот под действием гипобромита или с помощью оптического теста Варбурга при участии фермента глутаматдегидрогеназы. Исходя из того, что белки из биологических объектов содержат в среднем 16 % азота, полученное в результате анализа количество азота умножают на коэффициент 6,25. Недостатком азотометрических методов является длительность и сложность процедуры, даже при том, что аммиак, образующийся в реакции, можно определять ферментативным методом. Автоматизация позволяет использовать этот метод в ряде случаев в качестве метода сравнения из-за его достаточной точности и воспроизводимости. Гравиметрические методы Гравиметрические (весовые) методы определения белка основаны на высушивании белков до постоянной массы и взвешивании на аналитических весах. Методы трудоемки и в настоящее время практически не используются для определения общего белка сыворотки. Гравиметрический метод продолжает использоваться в некоторых лабораториях для определения фибриногена в плазме крови. «Преципитационные» методы определения общего белка основаны на снижении растворимости белков и образовании суспензии взвешенных частиц под воздействием различных агентов. О содержании белка в исследуемой пробе судят либо по интенсивности светорассеяния либо по ослаблению светового потока образовавшейся суспензией (турбидиметрический метод анализа). Результаты данной группы методов зависят от множества факторов: скорости смешивания реактивов, температуры реакционной смеси, значения рН среды, присутствия посторонних соединений, способов фотометрии. Тщательное соблюдение условий реакции способствует образованию стабильной суспензии с постоянным размером взвешенных частиц и получению воспроизводимых результатов. «Преципитационные» методы для определения белка в сыворотке крови не получили признания и нашли применение при определении белка в моче, спинномозговой жидкости и многих индивидуальных белков с использованием специфических антител. Спектрофотометрические методы определения общего белка сыворотки крови основаны на измерении светопоглощения в ультрафиолетовой области. Растворы белка обладают поглощением при 270–290 и 200–225 нм. Поглощение при 270–290 нм определяется присутствием в молекуле белка ароматических аминокислот — тирозина, триптофана и фенилаланина. Поглощение при 200–225 нм практически в 20 раз выше, чем при 280 нм, и обусловлено главным образом пептидными связями. Точность и специфичность методов определения белка, основанных на поглощении при 270 –290 нм, невелика, поскольку содержание тирозина и триптофана может колебаться в различных белках сыворотки крови. Кроме того, присутствие в сыворотке свободных аминокислот — тирозина и триптофана, мочевой кислоты и билирубина, поглощающих при 280 нм, вносит определенную погрешность. В связи с этим данный метод не используют для прямого определения содержания общего белка в сыворотке. Напротив, поглощение в ультрафиолетовой области — 200 – 225 нм обусловлено в основном пептидными связями, в связи с чем величина поглощения различных белков сыворотки различается незначительно. В этом спектральном диапазоне закон Бера соблюдается при концентрации белка в сыворотке до 120 г/л. Определение общего белка сыворотки крови с помощью прямой фотометрии при 210 нм обеспечивает получение результатов, сравнимых с биуретовым методом и методом Кьельдаля. В то же время данный метод практически не применяется из-за необходимости использования кювет, не поглощающих при 210 нм, и монохроматора, что удорожает метод. Рефрактометрические методы определения общего белка сыворотки основаны на способности растворов белка к преломлению светового потока. показатель преломления воды равен 1,3332,. Калибровку прибора проводят сывороткой с известной концентрацией белка. Простота делает рефрактометрию удобным методом для определения содержания общего белка в сыворотке крови, хотя при ряде заболеваний, в частности, при сахарном диабете, хронической почечной недостаточности его использование может приводить к существенной ошибке. Колориметрические методы определения общего белка основаны на цветных реакциях белков с хромоген-образующими реактивами или на неспецифическом связывании красителя. Среди колориметрических методов определения концентрации общего белка сыворотки наиболее распространенным считается биуретовый метод, основанный на так называемой «цветной биуретовой реакции», в ходе которой белки реагируют в щелочной среде с сульфатом меди с образованием соединений, окрашенных в фиолетовый цвет, интенсивность окраски зависит от концентрации общего белка в сыворотке. Биуретовый метод определения общего белка в сыворотке крови был утвержден в качестве унифицированного Колориметрические методы определения общего белка сыворотки крови достаточно просты и относительно дешевы. К недостатку метода относится интерферирующее действие некоторых веществ (в том числе лекарств).
5) По форме молекул белки можно разделить на две большие группы — глобулярные (имеющие сферическую форму) и фибриллярные (удлиненной формы). К глобулярным относят белки, у котор.молекула имеет форму эллипса.их Большинство и. Они имеют компактную структуру и многие из них, за счёт удаления гидрофобных радикалов внутрь молекулы, хорошо растворимы в воде. Наглядные примеры строения и функционирования глобулярных белков — рассмотренные выше миоглобин и гемоглобины. Фибриллярные белки имеют вытянутую, нитевидную структуру, К фибриллярным белкам относят коллагены, эластин, кератин, выполняющие в организме человека структурную функцию, а также миозин, участвующий в мышечном сокращении, и фибрин — белок свёртывающей системы крови.
|
||||
Последнее изменение этой страницы: 2017-01-24; просмотров: 704; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.191.87.157 (0.011 с.) |