Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Цели и задачи математического развития дошкольников.

Поиск

Формы контроля

Промежуточная аттестация – зачет

Составитель

Гуженкова Наталья Валерьевна, старший преподаватель кафедры технологий психолого-педагогического и специального образования ОГУ.

 

Принятые сокращения

ДОУ — дошкольное образовательное учреждение

ЗУН — знания, умения, навыки

ММР — методика математического развития

РЭМП — развитие элементарных математических представ­лений

ТиММР — теория и методика математического развития

ФЭМП — формирование элементарных математических представлений.

 

лекции 18 ч
практические 10 ч
лабораторные 8 ч

Тема № 1 (4 ч-лек., 2 ч-практ., 2 ч- лаборат, 4 ч – с.раб)

Общие вопросы обучения математике детей с отклонениями в развитии.

План

1. Цели и задачи математического развития дошкольников.

2. Содержание программы ФЭМП в ДОУ.

3. Значение и возможности математического развития детей
в дошкольном возрасте.

4. Принципы обучения математике.

5. Методы ФЭМП.

6. Приемы ФЭМП.

7. Средства ФЭМП.

8. Формы работы по математическому развитию дошкольников.

 

Цели и задачи математического развития дошкольников.

 

Под математическим развитием дошкольников следует пони­мать сдвиги и изменения в познавательной деятельности личности, которые происходят в результате формирования элементарных математических представлений и связанных с ними логических операций.

Формирование элементарных математических представле­ний — это целенаправленный и организованный процесс передачи и усвоения знаний, приемов и способов умственной деятельности (в области математики).

Задачи методики математического развития как научной области

1. Научное обоснование программных требований к уровню
формирования математических представлений у дошкольников в
каждой возрастной группе.

2. Определение содержания математического материала для
обучения детей в ДОУ.

3. Разработка и внедрение в практику эффективных дидакти­ческих средств, методов и разнообразных форм организации ра­боты по математическому развитию детей.

4. Реализация преемственности в формировании математических представлений в ДОУ и в школе.

5. Разработка содержания подготовки высокоспециализированных кадров, способных осуществлять работу по математиче­скому развитию дошкольников.

6. Разработка методических рекомендаций родителям по математическому развитию детей в условиях семьи.

 

Цель математического развития дошкольников

1. Всестороннее развитие личности ребенка.

2. Подготовка к успешному обучению в школе.

3. Коррекционно-воспитательная работа.

Задачи математического развития дошкольников

1. Формирование системы элементарных математических представлений.

2. Формирование предпосылок математического мышления.

3. Формирование сенсорных процессов и способностей.

4. Расширение и обогащение словаря и совершенствование
связанной речи.

5. Формирование начальных форм учебной деятельности.

Содержание программы ФЭМП в ДОУ.

Краткое содержание разделов программы по ФЭМП в ДОУ

1. «Количество и счет»: представления о множестве, числе, счете, арифметических действиях, текстовых задачах.

2. «Величина»: представления о различных величинах, их сравнения и измерения (длине, ширине, высоте, толщине, пло­щади, объеме, массе, времени).

3. «Форма»: представления о форме предметов, о геометриче­ских фигурах (плоских и объемных), их свойствах и отношениях.

4. «Ориентировка в пространстве»: ориентировка на своем теле, относительно себя, относительно предметов, относительно другого лица, ориентировка на плоскости и в пространстве, на листе бумаги (чистом и в клетку), ориентировка в движении.

5. «Ориентировка во времени»: представление о частях су­ток, днях недели, месяцах и временах года; развитие «чувства времени».

3. Значение и возможности математического развития детей
в дошкольном возрасте.

Значение обучения детей математике

Обучение ведет развитие, является источником развития.

Обучение должно идти впереди развития. Необходимо ори­ентироваться не на то, что способен уже делать сам ребенок, а на то, что он может сделать при помощи и под руководством взрослого. Л. С. Выгодский подчеркивал, что надо ориентиро­ваться на «зону ближайшего развития».

Упорядоченные представления, правильно сформированные первые понятия, вовремя развитые мыслительные способности, служат залогом дальнейшего успешного обучения детей в школе.

Психологические исследования убеждают, что в процессе обучения происходят качественные изменения в психическом развитии ребенка.

С ранних лет важно не только сообщать детям готовые зна­ния, но и развивать умственные способности детей, научить их самостоятельно, осознанно получать знания и использовать их в жизни.

Обучение в повседневной жизни носит эпизодический ха­рактер. Для математического развития важно, чтобы все знания давались систематически и последовательно. Знания в области математики должны усложняться постепенно с учетом возраста и уровня развития детей.

Важно организовать накопление опыта ребенка, научить его пользоваться эталонами (формы, величины и др.), рациональны­ми способами действия (счета, измерения, вычислений и др.).

Учитывая незначительный опыт детей, обучение идет пре­имущественно индуктивным путем: сначала накапливаются с по­мощью взрослого конкретные знания, затем они обобщаются в правила и закономерности. Необходимо использовать и дедук­тивный метод: сначала усвоение правила, затем его применение, конкретизация и анализ.

Для осуществления грамотного обучения дошкольников, их математического развития воспитатель сам должен знать пред­мет науки математики, психологические особенности развития математических представлений детей и методику работы.

 

Возможности всестороннего развития ребенка в процессе ФЭМП

I. Сенсорное развитие (ощущение и восприятие)

Источником элементарных математических представлений является окружающая реальная действительность, которую ребе­нок познает в процессе разнообразной деятельности, в общении со взрослыми и под их обучающим руководством.

В основе познания маленькими детьми качественных и количественных признаков предметов и явлений лежат сенсорные процессы (движение глаз, прослеживающих форму и размер предмета, ощупывание руками и др.). В процессе разнообразной перцеп­тивной и продуктивной деятельности у детей начинают форми­роваться представления об окружающем их мире: о различных признаках и свойствах предметов — цвете, форме, величине, их пространственном расположении, количестве. Постепенно нака­пливается сенсорный опыт, который является чувственной осно­вой для математического развития. При формировании элемен­тарных математических представлений у дошкольника мы опи­раемся на различные анализаторы (тактильный, зрительный, слуховой, кинестетический) и одновременно развиваем их. Раз­витие восприятия идет путем совершенствования перцептивных действий (рассматривание, ощупывание, выслушивание и пр.) и усвоения систем сенсорных эталонов, выработанных человечест­вом (геометрические фигуры, меры величин и др.).

II. Развитие мышления

Обсуждение

Назовите виды мышления.

Как в работе воспитателя по ФЭМП учитывается уровень
развития мышления ребенка?

Какие логические операции вы знаете?

Приведите примеры математических заданий для каждой
логической операции.

Мышление — процесс сознательного отражения действи­тельности в представлениях и суждениях.

В процессе формирования элементарных математических представлений у детей развиваются все виды мышления:

наглядно-действенное;

наглядно-образное;

словесно-логическое.

 

Логические операции Примеры заданий дошкольникам
Анализ (разложение целого на составные части) — Из каких геометрических фигур составлена машина?
Синтез (познание целого в единстве и взаи­мосвязи его частей) — Составь дом из геометрических фигур
Сравнение (сопоставление для установления сходства и различия) — Чем похожи эти предметы? (формой) — Чем отличаются эти предметы? (размером)
Конкретизация (уточнение) — Что ты знаешь о треугольнике?  
Обобщение (выражение основных результа­тов в общем положении) — Как можно одним словом назвать квадрат, прямоугольник и ромб?
Систематизация (расположение в опреде­ленном порядке) Поставь матрешки по росту
Классификация (распределение объектов по группам в зависимости от их общих признаков) — Разложи фигуры на две группы. — По какому признаку ты это сделал?
Абстрагирование (отвлечение от ряда свойств и отношений)     — Покажи предметы круглой формы

III. Развитие памяти, внимания, воображения

Обсуждение

Что включает понятие «память»?

Предложите детям математическое задание на развитие памяти.

Как активизировать внимание детей при формировании эле­ментарных математических представлений?

Сформулируйте задание детям на развитие воображения, используя математические понятия.

Память включает в себя запоминание («Запомни — это квад­рат»), припоминание («Как называется эта фигура?»), воспроиз­ведение («Нарисуй круг!»), узнавание («Найди и назови знако­мые фигуры!»).

Внимание не выступает как самостоятельный процесс. Его результатом является улучшение всякой деятельности. Для акти­визации внимания решающее значение имеет умение поставить задание и мотивировать его. («У Кати одно яблоко. К ней при­шла Маша, надо разделить яблоко поровну между двумя девоч­ками. Внимательно посмотрите, как я это буду делать!»).

Образы воображения формируются в результате мысленно­го конструирования объектов («Представьте фигуру с пятью уг­лами»).

 

IV. Развитие речи
Обсуждение

Как в процессе формирования элементарных математиче­ских представлений развивается речь ребенка?

Что дает математическое развитие для развития речи ре­бенка?

Математические занятия оказывают огромное положитель­ное влияние на развитие речи ребенка:

обогащение словаря (числительные, пространственные
предлоги и наречия, математические термины, характери­зующие форму, величину и др.);

согласование слов в единственном и множественном числе («один зайчик, два зайчика, пять зайчиков»);

формулировка ответов полным предложением;

логические рассуждения.

Формулировка мысли в слове приводит к лучшему понима­нию: формулируясь, мысль формируется.

V. Развитие специальных навыков и умений

Обсуждение

— Какие специальные навыки и умения формируются у дошко­льников в процессе формирования математических пред­ставлений?

На математических занятиях у детей формируются специаль­ные навыки и умения, необходимые им в жизни и учебе: счет, вычисление, измерение и др.

VI. Развитие познавательных интересов

Обсуждение

Каково значение наличия у ребенка познавательного интере­са к математике для его математического развития?

Каковы пути возбуждения познавательного интереса к ма­тематике у дошкольников?

Как можно возбудить познавательный интерес к занятиям по ФЭМП в ДОУ?

Значение познавательного интереса:

— активизирует восприятие и мыслительную деятельность;

— расширяет кругозор;

— способствует умственному развитию;

— повышает качество и глубину знаний;

— способствует успешному применению знаний на практике;

— побуждает самостоятельно приобретать новые знания;

— меняет характер деятельности и связанные с ней пережива­ния (деятельность становится активной, самостоятельной, разносторонней, творческой, радостной, результативной);

— оказывает положительное влияние на формирование лич­ности;

— оказывает положительное действие на здоровье ребенка (возбуждает энергию, повышает жизненный тонус, делает жизнь более счастливой);

Пути возбуждения интереса к математике:

· связь новых знаний с детским опытом;

· открытие новых сторон в прежнем опыте детей;

· игровая деятельность;

· словесное возбуждение;

· стимуляция.

Психологические предпосылки интереса к математике:

• создание положительного эмоционального отношения к педагогу;

• создание положительного отношения к занятиям.

Пути возбуждения познавательного интереса к занятию по ФЭМП:

§ объяснение смысла выполняемой работы («Кукле негде спать. Давайте построим для нее кровать! Каких размеров она должна быть? Давайте померяем!»);

§ работа с любимыми привлекательными объектами (игруш­ками, сказками, картинками и др.);

§ связь с близкой детям ситуацией («У Миши день рожде­ния. Когда у вас день рожденья, кто к вам приходит?
К Мише тоже пришли гости. Сколько чашек надо поста­вить на стол для праздника?»);

§ интересная для детей деятельность (игра, рисование, кон­струирование, аппликация и др.);

§ посильные задания и помощь в преодолении трудностей (ребенок должен в конце каждого занятия испытать удовле­творение от преодоления трудностей)', положительное отношение к деятельности детей (заинтере­сованность, внимание к каждому ответу ребенка, доброже­лательность); побуждение инициативы и др.

Методы ФЭМП.

Методы организации и осуществления учебно-познавательной деятельности

1. Перцептивный аспект (методы, обеспечивающие передачу учебной информации педагогом и восприятие ее детьми посред­ством слушания, наблюдения, практических действий):

а) словесный (объяснение, беседа, инструкция, вопросы и др.);

б) наглядный (демонстрация, иллюстрация, рассматривание и др.);

в) практический (предметно-практические и умственные дей­ствия, дидактические игры и упражнения и др.).

2. Гностический аспект (методы, характеризующие усвоение нового материала детьми, — путем активного запоминания, пу­тем самостоятельных размышлений или проблемной ситуации):

а) иллюстративно-объяснительный;

б) проблемный;

в) эвристический;

г) исследовательский и др.

3. Логический аспект (методы, характеризующие мыслитель­ные операции при подаче и усвоении учебного материала):

а) индуктивный (от частного к общему);

б) дедуктивный (от общего к частному).

4. Управленческий аспект (методы, характеризующие степень самостоятельности учебно-познавательной деятельности детей):

а) работа под руководством педагога,

б) самостоятельная работа детей.

Особенности практического метода:

ü выполнение разнообразных предметно-практических и ум­ственных действий;

ü широкое использование дидактического материала;

ü возникновение математических представлений в результате действия с дидактическим материалом;

ü выработка специальных математических навыков (счета, измерения, вычислений и др.);

ü использование математических представлений в быту, игре, труде и др.

Виды наглядного материала:

демонстрационный и раздаточный;

сюжетный и бессюжетный;

объемный и плоскостной;

специально-счетный (счетные палочки, абак, счеты и др.);

фабричный и самодельный.

Методические требования к применению наглядного мате­риала:

· новую программную задачу лучше начинать с сюжетного объемного материала;

· по мере усвоения учебного материала переходить к сюжетно-плоскостной и бессюжетной наглядности;

· одна программная задача объясняется на большом разно­образии наглядного материала;

· новый наглядный материал лучше показать детям заранее...

Требования к самодельному наглядному материалу:

— гигиеничность (краски покрываются лаком или пленкой, бархатная бумага используется только для демонстрацион­ного материала);

— эстетичность;

— реальность;

— разнообразие;

— однородность;

— прочность;

— логическая связанность (заяц — морковь, белка — шишка и т. п.);

— достаточное количество...

Особенности словесного метода

Вся работа построена на диалоге воспитатель — ребенок.

Требования к речи воспитателя:

• эмоциональная;

• грамотная;

• доступная;

• четкая;

• достаточно громкая;

• приветливая;

• в младших группах тон загадочный, сказочный, таинствен­ный, темп небыстрый, многократные повторения;

• в старших группах тон заинтересовывающий, с использова­нием проблемных ситуаций, темп достаточно быстрый, приближающийся к ведению урока в школе...

Требования к речи детей:

• грамотная;

• понятная (если у ребенка плохое произношение, воспита­тель проговаривает ответ и просит повторить); полными предложениями;

• с нужными математическими терминами;

• достаточно громкая...

Приемы ФЭМП

1. Демонстрация (обычно используется при сообщении но­вых знаний).

2. Инструкция (используется при подготовке к самостоятель­ной работе).

3. Пояснение, указание, разъяснение (используются для пре­дотвращения, выявления и устранения ошибок).

4. Вопросы к детям.

5. Словесные отчеты детей.

6. Предметно-практические и умственные действия.

7. Контроль и оценка.

Требования к вопросам воспитателя:

точность, конкретность, лаконизм;

логическая последовательность;

разнообразие формулировок;

небольшое, но достаточное количество;

избегать подсказывающих вопросов;

умело пользоваться дополнительными вопросами;

давать детям время на обдумывание...

Требования к ответам детей:

краткие или полные в зависимости от характера вопроса;

на поставленный вопрос;

самостоятельные и осознанные;

точные, ясные;

достаточно громкие;

грамматически правильные...

Что делать, если ребенок отвечает неправильно?

(В младших группах необходимо исправить, попросить по­вторить правильный ответ и похвалить. В старших — можно сде­лать замечание, вызвать другого и похвалить правильно ответив­шего.)

 

Средства ФЭМП

Оборудование для игр и занятий (наборное полотно, счет­ная лесенка, фланелеграф, магнитная доска, доска для письма, ТСО и др.).

Комплекты дидактического наглядного материала (игруш­ки, конструкторы, строительный материал, демонстрационный и раздаточный материал, наборы «Учись считать» и др.).

Литература (методические пособия для воспитателей, сбор­ники игр и упражнений, книги для детей, рабочие тетради и др.)...

 

8. Формы работы по математическому развитию дошкольников

 

Форма Задачи время Охват детей Ведущая роль
Занятие Дать, повторить, закрепить и сис­тематизировать знания, умения и навыки Планомерно, регуляр­но, систематично (длительность и регу­лярность в соответст­вии с программой) Группа или под­группа (в зави­симости от воз­раста и проблем в развитии) Воспитатель (или дефек-толог)
Дидактическая игра Закрепить, при­менить, расши­рить ЗУН На занятии или вне занятий Группа, под­группа, один ре­бенок Воспитатель и дети
Индивидуальная работа Уточнить ЗУН и устранить про­белы На занятии и вне занятий Один ребенок Воспитатель
Досуг (математи­ческий утренник, праздник, викто­рина и т. п.) Увлечь математи­кой, подвести итоги 1—2 раза в году Группа или не­сколько групп Воспитатель и другие специалисты
Самостоятельная деятельность Повторить, при­менить, отрабо­тать ЗУН Во время режимных процессов, бытовых ситуаций, повседнев­ной деятельности Группа, под­группа, один ребенок Дети и вос­питатель

 

Задание для самостоятельной работы студентов

Лабораторная работа № 1: «Анализ «Программы воспитания и обучения в детском саду» раздела «Формирование элементарных математических представлений».


Тема № 2 (2 ч-лек., 2 ч-практ., 2 ч- лаборат, 2 ч – с.раб)

ПЛАН

1. Организация занятий по математике в дошкольном учреж­дении.

2. Примерная структура занятий по математике.

3. Методические требования к занятию по математике.

4. Способы поддержания хорошей работоспособности детей на занятии.

5. Формирование навыков работы с раздаточным материа­лом.

6. Формирование навыков учебной деятельности.

7. Значение и место дидактических игр в математическом развитии дошкольников.

 

1. Организация занятия по математике в дошкольном учреж­дении

 

Занятия являются основной формой организации обучения детей математике в детском саду.

Занятие начинается не за партами, а со сбора детей вокруг воспитателя, который проверяет их внешний вид, привлекает внимание, рассаживает с учетом индивидуальных особенностей, учитывая проблемы в развитии (зрения, слуха и др.).

В младших группах: подгруппа детей может, например, расса­живаться на стулья полукругом перед воспитателем.

В старших группах: группа детей обычно рассаживается за парты по двое, лицом к воспитателю, так как проводится работа с раздаточным материалом, вырабатываются навыки учебной деятельности.

Организация зависит от содержания работы, возрастных и индивидуальных особенностей детей. Занятие может начинаться и проводиться в игровой комнате, в спортивном или музыкаль­ном зале, на улице и т. п., стоя, сидя и даже лежа на ковре.

Начало занятия должно быть эмоциональным, заинтересо­вывающим, радостным.

В младших группах: используются сюрпризные моменты, ска­зочные сюжеты.

В старших группах: целесообразно использовать проблемные ситуации.

В подготовительных группах, организовывается работа дежур­ных, обсуждается, чем занимались на прошлом занятии (в целях подготовки к школе).

Примерная структура занятий по математике.

Организация занятия.

Ход занятия.

Итог занятия.

2. Ход занятия

Примерные части хода математического занятия

Математическая разминка (обычно со старшей группы).

Работа с демонстрационным материалом.

Работа с раздаточным материалом.

Физкультминутка (обычно со средней группы).

Дидактическая игра.

Количество частей и их порядок зависят от возраста детей и проставленных задач.

В младшей группе: в начале года может быть только одна часть — дидактическая игра; во второй половине года — до трех час рей (обычно работа с демонстрационным материалом, работа с раздаточным материалом, подвижная дидактическая игра).

В средней группе: обычно четыре части (начинается регуляр­ная работа с раздаточным материалом, после которой необходи­ма физкультминутка).

В старшей группе: до пяти частей.

В подготовительной группе: до семи частей.

Внимание детей сохраняется: 3-4 минуты у младших дошкольников, 5—7 минут у старших дошкольников — это и есть примерная длительность одной части.

Виды физкультминуток:

1. Стихотворная форма (детям лучше не проговаривать, а правильно дышать) — обычно проводится во 2-й младшей и средней группах.

2. Набор физических упражнений для мышц рук, ног, спины и др. (лучше выполнять под музыку) — целесообразно проводить в старшей группе.

3. С математическим содержанием (применяются, если занятие не несет большой умственной нагрузки) — чаще применяет­ся в подготовительной группе.

4. Специальная гимнастика (пальчиковая, артикуляционная,, для глаз и др.) — регулярно проводится с детьми с проблемами в развитии.

Замечание:

если занятие подвижное, физкультминутку можно не про­водить;

вместо физкультминутки можно проводить релаксацию.

3. Итог занятия

Любое занятие должно быть законченным.

В младшей группе: воспитатель подводит итог после каждой части занятия. («Как хорошо мы поиграли. Давайте соберем иг­рушки и будем одеваться на прогулку».)

В средней и старшей группах: в конце занятия воспитатель сам подводит итог, приобщая детей. («Что мы сегодня узнали нового? О чем говорили? Во что играли?»). В подготовительной группе: дети сами делают выводы. («Чем мы сегодня занимались?») Организовывается работа дежурных.

Необходимо оценить работу детей (в том числе индивидуаль­но похвалить или сделать замечание).

3. Методические требования к занятию по математике (зависят от принципов обучения)

2. Образовательные задачи берутся из разных разделов про­граммы по формированию элементарных математических пред­ставлений и комбинируются во взаимосвязи.

3. Новые задачи подаются небольшими порциями и кон­кретизируются для данного занятия.

4. На одном занятии целесообразно решать не более одной новой задачи, остальные на повторение и закрепление.

5. Знания даются систематично и последовательно в доступ­ной форме.

6. Используется разнообразный наглядный материал.

7. Демонстрируется связь полученных знаний с жизнью.

8. Проводится индивидуальная работа с детьми, осуществ­ляется дифференцированный подход к отбору заданий.

9. Регулярно осуществляется контроль над уровнем усвое­ния материала детьми, выявление пробелов в их знаниях и их устранение.

10. Вся работа имеет развивающую, коррекционно-воспитательную направленность.

11. Занятия по математике проводятся в первой половине дне в середине недели.

12. Занятия по математике лучше сочетать с занятиями, не требующими большой умственной нагрузки (по физкультуре, музыке, рисованию).

13. Можно проводить комбинированные и интегрированные занятия по разным методикам, если задачи сочетаются.

14. Каждый ребенок должен активно участвовать в каждом занятии, выполнять умственные и практические действия, отра­жать в речи свои знания.

ПЛАН

1. Этапы формирования и содержание количественных представлений.

2. Значение развития количественных представлений у дошкольников.

3. Физиологические и психологические механизмы восприятия количества.

4. Особенности развития количественных представлений у детей и методические рекомендации к их формированию в ДОУ.

 

1. Этапы формирования и содержание количественных представлений.

 

Этапы формирования количественных представлений

(«Этапы счетной деятельности» по А.М. Леушиной)

1. Дочисловая деятельность.

2. Счетная деятельность.

3. Вычислительная деятельность.

Содержание количественных представлений дошкольников

1. Дочисловая деятельность

Для правильного восприятия числа, для успешного формирования счетной деятельности необходимо прежде всего научить детей работать с множествами:

— видеть и называл существенные признаки предметов;

— видеть множество целиком;

— выделять элементы множества;

— называть множество («обобщающее слово») и перечислять его элементы (задавать множество двумя способами: указы­вая характеристическое свойство множества и перечисляя
все элементы множества);

— составлять множество из отдельных элементов и из под­множеств;

— делить множество на классы;

— упорядочивать элементы множества;

— сравнивать множества по количеству путем соотнесения «один к одному» (устанавливая взаимно однозначные соот­ветствия);

— создавать равночисленные множества;

— объединять и разъединять множества (понятие «целого и части»).

 

2. Счетная деятельность

Владение счетом включает в себя:

• знание слов-числительных и называние их по порядку;

• умение соотносить числительные элементам множества «один к одному» (устанавливать взаимно однозначное со­ответствие между элементами множества и отрезком нату­рального ряда);

• выделение итогового числа.

 

Владение понятием числа включает в себя:

• понимание независимости результата количественного счета от его направления, расположения элементов множества и их качественных признаков (размера, формы, цвета и др.);

• понимание количественного и порядкового значения числа;

Представление о натуральном ряде чисел и его свойствах вклю­чает в себя:

• знание последовательности чисел (счет в прямом и обрат­ном порядке, называние предыдущего и последующего числа);

• знание образования соседних чисел друг из друга (путем прибавления и вычитания единицы);

• знание связей между соседними числами (больше, меньше).

 

3. Вычислительная деятельность

Вычислительная деятельность включает в себя:

· знание связей между соседними числами («больше (мень­ше) на 1»);

· знание образования соседних чисел (п ± 1);

· знание состава чисел из единиц;

· знание состава чисел из двух меньших чисел (таблица сло­жения и соответствующие случаи вычитания);

· знание цифр и знаков +, —, =, <, >;

· умение составлять и решать арифметические задачи.

Для подготовки к усвоению десятичной системы счисления не­обходимо:

o владение устной и письменной нумерацией (называние и запись);

o владение арифметическими действиями сложения и вычи­тания (называние, вычисление и запись);

o владение счетом группами (парами, тройками, пятками, десятками и др.).

Замечание. Данными знаниями и умениями дошкольнику не­обходимо качественно овладеть в пределах первого десятка. Только при полном усвоении этого материала можно начинать работать со вторым десятком (лучше это делать в школе).

 

О ВЕЛИЧИНАХ И ИХ ИЗМЕРЕНИИ

ПЛАН

1. Содержание понятий «величина» и «измерение».

2. Значение развития у дошкольников представлений о вели­чинах.

3. Физиологические и психологические механизмы воспри­ятия размеров предметов.

4. Особенности развития представлений о величинах у детей и методические рекомендации по их формированию в ДОУ.

 

Содержание понятий «величина» и «измерение».

Дошкольники знакомятся с различными величинами: длина, ширина, высота, толщина, глубина, площадь, объем, масса, вре­мя, температура.

Первоначальное представление о величине связано с созда­нием чувственной основы, формированием представлений о раз­мерах предметов: показать и назвать длину, ширину, высоту.

ОСНОВНЫЕ свойства величины:

- сравнимость

- относительность

- измеряемость

- изменчивость

 

Определение величины возможно только на основе сравне­ния (непосредственно или сопоставляя с неким образом). Характеристика величины относительна и зависит от выбранных для сравнения объектов (А < В, но А > С).

Измерение дает возможность характеризовать величину чис­лом и перейти от сравнения непосредственно величин к сравне­нию чисел, что удобнее, так как делается в уме. Измерение — это сравнение величины с величиной того же рода, принятой за единицу. Цель измерения — дать численную характеристику величине. Изменчивость величин характеризуется тем, что их можно складывать, вычитать, умножать на число.

Все эти свойства могут быть осмыслены дошкольниками в процессе их действий с предметами, выделении и сопоставлении величин, измерительной деятельности.

Понятие числа возникает в процессе счета и измерения. Из­мерительная деятельность расширяет и углубляет детские представления о числе, уже сложившиеся в процессе счетной деятельности.

В 60—70-е годы XX в. (П. Я. Гальперин, В. В. Давыдов) возникла идея об измерительной практике как основе формирования понятия числа у ребенка. Сейчас существуют две концепции:

• формирование измерительной деятельности на базе знании числа и счета;

• формирование понятия числа на базе измерительной дея­тельности.

Счет и измерение не должны противопоставляться друг другу, они взаимно дополняют друг друга в процессе освоения числа как абстрактного математического понятия.

В детском саду сначала учим детей выделять и называть разные параметры размеров (длину, ширину, высоту) на основе сравнения на глаз резко контрастных по величине предметов. Затем формируем умение сравнивать способом приложения и наложения незначительно различающиеся и равные по величине предметы с ярко выраженной одной величиной, потом по не­скольким параметрам одновременно. Работа по выкладыванию сериационных рядов и специальные упражнения для развития глазомера закрепляют представления о величинах. Знакомство с условной меркой, равной одному из сравниваемых предметов по величине, готовит детей к измерительной деятельности.

Деятельность измерения довольно сложна. Она требует опре­деленных знаний, специфических умений, знания общеприня­той системы мер, применения измерительных приборов. Изме­рительная деятельность может формироваться у дошкольников при условии целенаправленного руководства взрослых и боль­шой практической работы.

Схема измерения

 

Математические понятия Ключевые вопросы Понятия дошкольников
Величина — Что? Объект Величина
Эталон, единица величины — В чем? Мерка
Инструмент — Чем?    
Правила — Как? Правила
Численная характеристика величины — Сколько? Число

Прежде чем знакомить с общепринятыми эталонами (санти­метром, метром, литром, килограммом и др.), целесообразно сначала научить детей пользоваться условными мерками при из­мерении:

протяженности (длина, ширина, высота) с помощью поло­сок, палок, веревок, шагов;

объема жидких и сыпучих веществ (количество крупы, пес­ка, воды и др.) с помощью стаканов, ложек, банок;

площади (фигуры, листа бумаги и др.) клетками или квадра­тами;

массы предметов (например: яблоко — желудями).

Использование условных мерок делает измерение доступным для дошкольников, упрощает деятельность, но не меняет ее сущ­ности. Сущность измерения во всех случаях одна и та же (хотя объекты и средства разные). Обычно обучение начинают с изме­рения длины, что больше знакомо детям и пригодится в школе в первую очередь.

После этой работы можно познакомить дошкольников с эта­лонами и некоторыми измерительными приборами (линейкой, весами).

В процессе формирования измерительной деятельности до­школьники способны понять, что:

o измерение дает точную количественную характеристику ве­личине;

o для измерения необходимо выбирать адекватную мерку;

o число мерок зависит от измеряемой величины (чем больше
величина, тем больше ее численное значение и наоборот);

o результат измерения зависит от выбранной мерки (чем больше мерка, тем меньше численное значение и наоборот);

o для сравнения величин необходимо их измерять одинако­выми мерками.

Измерение дает возможность сравнивать величины не только на сенсорной основе, но и на основе умственной деятельности, формирует представление о величине как математическом



Поделиться:


Последнее изменение этой страницы: 2017-01-19; просмотров: 17912; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.145.33.230 (0.013 с.)