Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Дипломная работа: Математические игры как средство развития познавательного интереса учащихся

Поиск

Дипломная работа: Математические игры как средство развития познавательного интереса учащихся

Название: Математические игры как средство развития познавательного интереса учащихся Раздел: Рефераты по педагогике Тип: дипломная работа Добавлен 03:43:45 28 мая 2008 Похожие работы Просмотров: 5513 Комментариев: 2 Оценило: 0 человек Средний балл: 0 Оценка: неизвестно Скачать
 

Содержание

Введение. 4

Глава I. Формирование познавательного интереса учащихся. 7

§1 Психолого-педагогические основы познавательного интереса. 7

§2 Познавательный интерес и пути его формирования. 10

2.1 Познавательный интерес, стадии его развития. 10

2.2 Условия формирования познавательного интереса. 16

2.3 Формирование познавательных интересов в обучении математике. 19

Глава II. Внеклассная работа по математике как средство развития познавательного интереса учащихся. 24

§1 Значение внеклассной работы по математике как средства развития познавательного интереса. 24

§2 Математическая игра как форма внеклассной работы по математике. 30

Глава III. Математическая игра как средство развития познавательного интереса учащихся. 34

§ 1 Психолого-педагогические основы математической игры.. 34

§ 2 Математические игры как средство развития познавательного интереса к математике. 38

2.1 Актуальность. 38

2.2 Цели, задачи, функции, требования математической игры.. 41

2.3 Виды математических игр. 44

2.4 Структура математической игры.. 63

2.5 Организационные этапы математической игры.. 65

2.6 Требования к подбору задач. 67

2.7 Требования к проведению математической игры.. 70

Глава IV. Опытное преподавание. 74

§1 Анкетирование учителей и учеников. 74

§2 Наблюдения, личный опыт. 80

Заключение. 85

Библиографический список. 86

Введение

Как известно, знания, полученные без интереса, не становятся полезными. Поэтому одной из труднейших и важнейших задач дидактики как была, так и остается проблема воспитания интереса к учению.

Познавательный интерес в трудах психолог и педагогов изучен достаточно тщательно. Но все-таки остаются не решенными некоторые вопросы. Главный из них – как вызвать устойчивый познавательный интерес.

С каждым годом дети все равнодушнее относятся к учебе. В частности понижается у учеников к такому предмету как математика. Этот предмет воспринимается учащимися как скучный и совсем не интересный. В связи с этим учителями ведется поиск эффективных форм и методов обучения математике, которые способствовали бы активизации учебной деятельности, формированию познавательного интереса.

Одна из возможностей развивать познавательный интерес учащихся к математике лежит в широком применении внеклассной работы по математике. Внеклассная работа по математике имеет мощный резерв для реализации такой задачи обучения, как повышение познавательного интереса, через все разнообразие форм ее проведения. Одной из таких форм является математическая игра.

Математические игры отличаются эмоциональностью, вызывают у учащихся положительное отношение к внеклассным занятиям по математике, а, следовательно, и к математике в целом; способствуют активизации учебной деятельности; обостряют интеллектуальные процессы и главное, способствуют формированию познавательного интереса к предмету. Но следует заметить, что математическая игра как форма внеклассной работы применяется довольно таки редко, в связи с трудностями организации и проведения. Таким образом, большие образовательные, контролирующие, воспитывающие возможности (в частности возможность развития познавательного интереса) применения математической игры во внеклассной работе по математике реализуются недостаточно.

А может ли математическая игра являться эффективным средством развития познавательного интереса учащихся к математике? В этом и заключается проблема данного исследования.

Исходя из этой проблемы, можно определить цель исследования – обосновать эффективность использования математической игры во внеклассной работе по математике для формирования и развития познавательного интереса у учащихся к математике.

Объектом исследования будет служить познавательный интерес, предметомматематическая игра как форма внеклассной работы по математике.

Сформулируем гипотезу исследования: Использование математической игры во внеклассной работе по математике способствует развитию познавательного интереса у учащихся к математике.

Задачи:

1. Рассмотреть понятие познавательного интереса с различных точек зрения, стадии развития, условия его формирования;

2. Изучить пути формирования познавательного интереса при обучении математике;

3. Рассмотреть цели, задачи, формы организации внеклассной работы по математике как средства развития познавательного интереса;

4. Изучить математическую игру как форму внеклассной работы по математике;

5. Определить цели, задачи, условия проведения, компоненты, виды математических игр, требования к проведению и подбору задач;

6. На основе анализа методической, психолого-педагогической литературы, опроса учителей и учащихся, собственного опыта проведения математической игры обосновать необходимость применения математической игры на внеклассных занятиях по математике.

Для решения данных задач используются следующие методы:

1. Изучение методической, психолого-педагогической литературы по рассматриваемой теме;

2. Наблюдение за учащимися;

3. Анкетирование;

4. Опытно-экспериментальная работа.

Глава I. Формирование познавательного интереса учащихся

Познавательный интерес и пути его формирования

Формирование познавательных интересов в обучении

Математике

Познавательный интерес, как и всякая черта личности и мотив деятельности школьника, развивается и формируется в деятельности, и, прежде всего, в учении.

Успех учителя в процессе обучения зависит в первую очередь от того, насколько ему удалось заинтересовать учащихся своим предметом. Но интерес не может возникнуть сам по себе, учителю нужно принять в этом участие, поспособствовать. Как это сделать? Следует заметить, что успеваемость учащихся по предмету не всегда является показателем наличия у ученика познавательного интереса к нему. Ребенок может получать только отличные оценки и это может свидетельствовать только о его старательности или о том, что ему легко дается математика. О наличии у него познавательного интереса к математике утверждать нельзя. В то же время, ученик, не отличающийся успеваемостью по математике, может проявлять интерес к предмету, ему нравиться заниматься на уроке математики. Работа учителя в классе заключается в том, чтобы выявить таких учеников, развить и сформировать у них устойчивый познавательный интерес. Педагог должен поддержать таких учеников, разнообразить их учебную деятельность, привлечь к внеклассной работе по математике. Возможно, таким детям понравиться решать нестандартные математические задачи, в которых они смогут проявить свои математические способности. Добившись успеха, ученик поднимется не только в своих глазах, но в глазах одноклассников. Все это вдохновит его на дальнейшее более серьезное изучение математики.

Чтобы заинтересовать как можно больше учащихся математикой, учителю нужно использовать в обучении математике различные формы, знать основные пути формирования познавательного интереса. Формирование познавательных интересов учащихся в обучении может происходить по двум основным каналам, с одной стороны само содержание учебных предметов содержит в себе эту возможность, а с другой – путем определенной организации познавательной деятельности учащихся.

Первое, что является предметом познавательного интереса для школьников – это новые знания о мире. Вот почему глубоко продуманный отбор содержания учебного материала, показ богатства, заключенного в научных знаниях, являются важнейшим звеном формирования интереса к учению. Каковы же пути осуществления этой задачи? Прежде всего, интерес возбуждает и подкрепляет такой учебный материал, который является для учащихся новым, неизвестным, поражает их воображение, заставляет удивляться. Удивление - сильный стимул познания, его первичный элемент. Удивляясь, человек как бы стремится заглянуть вперед. Он находится в состоянии ожидания чего-то нового.

Но познавательный интерес к учебному материалу не может поддерживаться все время только яркими фактами, а его привлекательность невозможно сводить к удивляющему и поражающему воображение. Новое и неожиданное всегда в учебном материале выступает на фоне уже известного и знакомого. Вот почему для поддержания познавательного интереса важно учить школьников умению в знакомом видеть новое. Такое преподавание подводит к осознанию того, что у обыденных, повторяющихся явлений окружающего мира множество удивительных сторон, о которых он сможет узнать на уроках.

Все значительные явления жизни, ставшие обычными для ребенка в силу своей повторяемости, могут и должны приобрести для него в обучении неожиданно новое, полное смысла, совсем иное звучание. И это обязательно явится стимулом интереса ученика к познанию. Именно поэтому учителю необходимо переводить школьников со ступени его чисто житейских, достаточно узких и бедных представлений о мире - на уровень научных понятий, обобщений, понимания закономерностей. Интересу к познанию содействует также показ новейших достижений науки. Сейчас, больше чем когда-либо, необходимо расширять рамки программ, знакомить учеников с основными направлениями научных поисков, открытиями. Все это можно осуществлять как на уроке математике, так и во внеклассной работе по математике.

Есть и другие направления развития интереса у школьников к математике, например использование научной фантастики. Задачи так же могут служить средством развития познавательного интереса. Содержание задач, их занимательная фабула, связь с жизнью незаменимы при обучении математике. Занимательность создает заинтересованность, рождает чувство ожидания, побуждает любопытство, любопытство переходит в любознательность и побуждает интерес к решению математических задач, к самой математике. К содержательной стороне задачи относится и ее новизна, достигаемая за счет включения сведений, связанных с жизнью. Повышают интерес к математике и задачи, содержащие факты из жизни конкретных исторических личностей, сведения из истории математики. Вообще, включение сведений из истории науки в занятия способствуют более сознательному усвоению учебного материала, развитию интереса у школьников к математике. Новизна задач также может достигаться путем реализации предметных связей. Также для развития интереса к математике можно использовать задачи и упражнения, содержащие ошибки. Такие задачи приучают школьников обращать внимание на необходимость строгих логических рассуждений. Умение решать задачи является одним из показателей уровня математического развития учащихся, глубины усвоения имеющихся у них знаний.

Далеко не все в учебном материале может быть для учащихся интересно. И тогда выступает еще один, не менее важный источник познавательного интереса – сам процесс деятельности. Что бы возбудить желание учиться, нужно развивать потребность ученика заниматься познавательной деятельностью, а это значит, что в самом процессе ее школьник должен находить привлекательные стороны, что бы сам процесс учения содержал в себе положительные заряды интереса. Так эпизодическое использование игровых ситуаций, проведение в виде игр уроков и внеклассной работы своей не традиционностью и занимательностью повышают интерес учащихся к предмету.

Разнообразив содержание занятий по математике, как внеклассных, так и самих уроков, изменяя форму их приведения и учтя все условия формирования познавательного интереса, можно способствовать его развитию у большого числа учащихся.

Вывод: Итак, мы рассмотрели в первой главе понятие познавательного интереса, условия и способы его формирования при обучении математике. В связи с этим можно сделать следующие выводи:

- Познавательный интереспсихологи и педагоги изучают с разных сторон, но любое исследование рассматривает интерес как часть общей проблемы воспитания и развития.

- Познавательный интерес – это избирательная направленность личности на предметы и явления окружающей действительности.

- Познавательный интерес можно рассматривать с разных сторон: как мотив учения, как устойчивую черту личности, как сильное средство обучения. Для того чтобы активизировать учебную деятельность школьника нужно систематически возбуждать, развивать и укреплять познавательный интерес и как мотив, и как стойкую черту личности, и как мощное средство обучения.

- Существует четыре уровня развития познавательного интереса. Это любознательность, любопытство, познавательный интерес и теоретический интерес. Учителю нужно уметь определять, на какой стадии развития познавательный интерес у отдельных учащихся, для того чтобы способствовать укреплению интереса к предмету и его дальнейшему росту.

- Выделяют также условия формирования познавательного интереса, а именно: максимальная опора на активную мыслительную деятельность учащихся, ведение учебного процесса на оптимальном уровне развития учащихся, положительный эмоциональный тонус учебного процесса, благоприятное общение в учебном процессе.

- Познавательный интерес к математике формируется и развивается в процессе учения. Главная цель учителя заключается в том, чтобы заинтересовать учащихся своим предметом. А успешно осуществлять данную цель можно не только на уроках, но и во внеклассной работе по математике.

Актуальность

Предмет математики представляет собой связную систему определений, теорем и правил. Каждое новое определение, теорема и правило опираются на предыдущее, ранее введенное, доказанное. Каждая новая задача включает элементы ранее решенной. Такая связность, взаимозависимость и дополняемость всех разделов предмета, нетерпимость к пробелам и пропускам, недопониманию, как в целом, так и в частях, является причиной неуспехов учащихся в обучении математики. Вследствие этих неуспехов возникает потеря интереса к предмету. Но наряду с этим математика это также система задач, для решения каждой из которых требуются умственные усилия, настойчивости, воли и других качеств личности. Эти особенности математики создает благоприятные условия для развития активности мышления, но также они нередко и служат причиной пассивности учащихся. Для таких учеников, не проявляющих интерес к математике, для которых она кажется «скучной», «сухой» наукой и нужно проводить внеклассные занятия в интересной, занимательной форме, в форме математической игры. Первоначально учащихся увлечет сам процесс, а в последствии захочется узнать что-то новое, для того добиться успехов в игре, выиграть.

Известно, что только при наличии как близких мотивов – непосредственно побуждающих учебную деятельность (интересы, поощрения, похвала, оценка и др.), так и далеких – социальных мотивов, ориентирующих ее (долг, потребность, ответственность перед коллективом, осознание общественного значения учения и др.), возможна устойчивая мыслительная деятельность, интерес к предмету. Отсутствие мотивов или ослабление их может привести к пассивности. Нередко имеет место на уроке математике выполнение однообразной, «скучной» работы, выполнение однотипных заданий. В таких случаях интерес к предмету ослабляется, близкие мотивы деятельности отсутствуют, ослаблен мотив практической значимости, т.е. мотивы деятельности в данный момент не имеют для учащихся смысла. Наличие только далеких мотивов, подкрепляющихся словесно, не создает достаточных условий для проявления настойчивости и активности (вычисления остаются не законченными). Подобное можно наблюдать и при решении задач повышенной трудности, которым отводиться большое место на внеклассных занятиях. Эта работа осознается учащимися как полезная и нужная, но трудности иногда оказываются слишком большими и эмоциональный подъем, который наблюдался в начале решения задачи, снижается, ослабляется внимание, воля, снижается интерес и в конечном счете все это приводит к пассивности. [9] В данных ситуациях с большим эффектом могут использоваться математические игры, содержащие элементы соревнования. У учащихся есть цель выиграть, обогнать всех остальных, быть лучшим. Они глубоко сосредотачиваются на задании, упорно решают его. Достигнув успеха, ученик «стремится к преодолению еще более высоких вершин», а неудачи лишь подстегают его к тому, чтобы подготовиться и в следующий раз добиться своей цели. Все это стимулирует у учащихся познавательную активность, интерес.

Активность и интерес к деятельности зависит от характера деятельности и ее организации. Известно, что деятельность, в которой ставятся вопросы, проблемы, требующие самостоятельного решения, деятельность, в процессе которой рождаются положительные эмоции (радость успеха, удовлетворения и др.), чаще всего вызывают интерес, активную познавательную деятельность. И наоборот, деятельность однообразная, рассчитанная на механическое выполнение, запоминание, как правило, не может вызвать интереса, отсутствие положительных эмоций может привести к пассивности. Математические игры разнообразны, требуют самостоятельности и эмоционально насыщены. Использование их на внеклассных занятиях повышает активность учащихся, заряжает положительными эмоциями, способствует возникновению познавательного интереса к предмету. Математическая игра завлекает учащихся. Они с увлечением выполняют различные задания. Учащиеся не задумываются над тем, что во время игры они учатся, занимаются тем же умственным трудом, что и на уроках.

Все это говорит о том, что математическую игру нужно использовать во внеклассной работе по математике для того чтобы воздействовать на пробуждение интеллектуальной активности школьников и формирование у них интереса к предмету.

2.2 Цели, задачи, функции, требования математической игры

Как уже говорилось выше основная цель применения математической игры на внеклассных занятиях о математике – это развитие устойчивого познавательного интереса у учащихся к предмету через разнообразие используемых математических игр.

Так же можно выделить и следующие цели применения математических игр:

o Развитие мышления;

o Углубление теоретических знаний;

o Самоопределение в мире увлечений и профессий;

o Организация свободного времени;

o Общение со сверстниками;

o Воспитание сотрудничества и коллективизма;

o Приобретение новых знаний, умений и навыков;

o Формирование адекватной самооценки;

o Развитие волевых качеств;

o Контроль знаний;

o Мотивация учебной деятельности и др.

Математические игры призванырешать следующие задачи.

Образовательные:

- Способствовать прочному усвоению учащимися учебного материала;

- Способствовать расширению кругозора учащихся и др.

Развивающие:

- Развивать у учащихся творческое мышление;

- Способствовать практическому применению умений и навыков, полученных на уроках и внеклассных занятиях;

- Способствовать развитию воображения, фантазии, творческих способностей и др.

Воспитательные:

- Способствовать воспитанию саморазвивающейся и самореализующейся личности;

- Воспитать нравственные взгляды и убеждения;

- Способствовать воспитанию самостоятельности и воли в работе и др.

Математические игры выполняют различные функции.

1. Во время математической игры происходит одновременно игровая, учебная и трудовая деятельность. Действительно, игра сближает то, что в жизни не сопоставимо и разводит то, что считается едино.

2. Математическая игра требует от школьника, то чтобы он знал предмет. Ведь не умея решать задачи, разгадывать, расшифровывать и распутывать ученик не сможет участвовать в игре.

3. В играх ученики учатся планировать свою работу, оценивать результаты не только чужой, но и своей деятельности, проявлять смекалку при решении задач, творчески подходить к любому заданию, использовать и подбирать нужный материал.

4. Результаты игр показывают школьникам их уровень подготовленности, тренированности. Математические игры помогают в самосовершенствовании учащихся и, тем самым побуждают их познавательную активность, повышается интерес к предмету.

5. Во время участия в математических играх учащиеся не только получают новую информацию, но и приобретают опыт сбора нужной информации и правильного ее применения.

К игровым формам внеклассных занятий предъявляется рад требований.

К участникам математической игры должны предъявляться определенные требования в отношении знаний. В частности, чтобы играть – надо знать. Это требование придает игре познавательный характер.

Правила игры должны быть такими, чтобы учащиеся проявили желание поучаствовать в ней. Поэтому игры должны разрабатываться с учетом возрастных особенностей детей, проявляемых ими интересов в том или ином возрасте, их развития и имеющихся знаний.

Математические игры должны разрабатываться с учетом индивидуальных особенностей учащихся, с учетом различных групп учащихся: слабые, сильные; активные, пассивные и др. Они должны быть такими, чтобы каждый тип учащихся смог проявить себя в игре, показать свои способности, возможности, свою самостоятельность, настойчивость, смекалку, испытать чувство удовлетворенности, успеха.

При разработке игры нужно предусмотреть более легкие варианты игры, задания, для слабых учащихся и наоборот более сложный вариант для сильных учеников. Для совсем слабых учащихся разрабатываются игры, где не нужно думать, а нужна, лишь смекалка. Таким образом, можно привлечь больше учащихся к посещению внеклассных занятий по математике и тем самым способствовать развитию у них познавательного интереса.

Математические игры должны разрабатываться с учетом предмета и его материала. Они должны быть разнообразны. Многообразие видов математических игр поможет повысить эффективность внеклассной работы по математике, послужит дополнительным источником систематических и прочных знаний.

Таким образом, математическая игра как форма внеклассной работы по математике имеет свои цели, задачи и функции. Соблюдение же всех требований предъявляемых к математическим играм позволит добиться хороших результатов по привлечению большего числа учащихся к внеклассной работе по математике, возникновению у них познавательного интереса к ней. Не только сильные учащиеся будут больше проявлять заинтересованность к предмету, но и слабые учащиеся начнут проявлять свою активность в учении.

Виды математических игр

Одним из требований к математическим играм является их многообразие. Можно привести следующую классификацию математических игр по разным основаниям, но она не будет являться строгой, так как каждую игру можно отнести к нескольким видам из этой классификации.

Итак, система математических игр включает следующие виды:

1. По назначению различают обучающие, контролирующие и воспитывающие игры. Также можно выделить развивающие и занимательные.

Участвуя в обучающей игре, школьники приобретают новые знания, навыки. Так же такая игра может служить стимулом для получения новых знаний: ученики вынуждены приобрести новые знания перед игрой; очень заинтересовавшись каким-либо материалом, полученным на игре, ученик может изучить его подробнее уже самостоятельно.

Воспитывающая игра имеет целью воспитать у учащихся отдельные качества личности, такие как внимание, наблюдательность, смекалка, самостоятельность и др.

Для участия в контролирующей игре учащимся достаточно имеющихся у них знаний. Цель такой игры и состоит в том, чтобы школьники закрепили свои полученные знания, проконтролировать их.

Занимательные игры отличаются от других видов тем, что для участия в ней никаких конкретных знаний не надо, нужна только смекалка. Основная цель такой игры это привлечь к математике слабых учеников, не проявляющих интереса к предмету, развлечь.

И последний вид в этой классификации, это развивающие игры. Они в основном предназначены для сильных учеников, увлекающихся математикой. Они развивают нестандартность мышления учеников при решении соответствующих заданий. Такие игры особой развлекательностью не отличаются, являются более серьезными.

Конечно, в практике все эти виды переплетаются между собой, и одна игра может быть одновременно и контролирующей и обучающей, лишь в соотношении между целями можно говорить о принадлежности математической игры к тому или иному виду.

2. По массовости различают коллективные и индивидуальные игры.

Игры подростков чаще всего принимают коллективный характер. Школьникам свойственно чувство коллективизма, у них есть желание участвовать в жизни коллектива в качестве его полноправного члена. Дети стремятся к общению со своими сверстниками, стремятся участвовать с ними в совместной деятельности. Поэтому использование коллективных математических игр во внеклассной работе по математике так необходимо. Они привлекают не только сильных учеников, но и слабых, желающих поучаствовать в игре вместе со своими друзьями. Такие ученики, не проявляющие интереса к математике, в коллективной игре могут добиться успеху, у них появляется чувство удовлетворенности, интерес.

С другой же стороны сильные ученики предпочитают индивидуальные игры, так как они более самостоятельны. Они стремятся к самоанализу, самооценке, и поэтому у них возникает потребность проявить свои индивидуальные возможности, качества. Такие игры связаны обычно с умственным трудом, то есть являются интеллектуальными, в них учащиеся могут проявить свои умственные способности.

Оба вида игр имеет свои особенности и возможности, поэтому о предпочтении какой-нибудь из них говорить нельзя.

3. По реакции выделяют подвижные и тихие игры.

Основной деятельностью учащихся является учеба. Они проводят в школе 5-6 часов на уроках, и дома 2-3 часа уходит на выполнение домашнего задания. Естественно, что их растущий организм требует движения. Поэтому на внеклассных занятиях по математике нужно вводить элементы подвижности. Математическая игра позволяет включить в себя подвижную деятельность и не мешает умственной работе. Действительно, подростковый возраст отличается кипучей деятельностью и энергичностью движений. Наиболее естественное состояние ребенка это движение, и, поэтому использование подвижных математических игр на внеклассных занятиях привлекает детей своей необычностью, им нравится участвовать в такой деятельности, участвуя в ней, они не замечают, что еще и учатся, возникает интерес не только к внеклассной работе по математике, но и к самому предмету.

Тихие же игры служат хорошим средством перехода от одного умственного труда к другому. Они используются перед началом занятия математического кружка, математического вечера, олимпиады и других массовых мероприятий, в конце внеклассного занятия по математике. К тому же встречаются дети, которые предпочитают тихие игры, требующие пытливости ума, настойчивости. Для таких детей подойдут тихие игры, такие как различные головоломки, кроссворды, игры на складывание и разрезание фигур, и многие другие.

4. По темпу выделяют скоростные и качественные игры.

Некоторые математические игры должны принимать форму состязаний, соревнований между командами или на личное первенство, это обусловлено характерной чертой подростков, стремления к различным видам состязаний.

Следует различать два вида состязаний. Во-первых, это игры, в которых победа достигается за счет скорости действий, но это без ущерба качеству решения задач. Например, задания на скорость выполнения вычислений, преобразований, доказательств теорем и т. д. Такие игры называются скоростными. Во-вторых, так же можно выделить игры, победа в которых достигается не за счет скорости выполнения заданий, а за счет качества его выполнения, правильности решения, безошибочности. Такие игры условно называют качественными.

Первый вид игр (скоростные) необходим, когда нужен автоматизм действий, формируется навык быстрого вычисления, выполнения действий, не требующих большого умственного труда. Также элементы скоростных игр могут быть включены в другие математические игры. Использование таких игр сопровождается эмоциональным подъемом, желанием выиграть, стремлением быть не только лучшими, но и самым быстрым, вызывает интерес учащихся.

Качественные же игры направлены на серьезные вычисления, требует вдумчивой работы над трудными задачами, теоремами. Такие игры способствуют пробуждению мыслительной деятельности учащихся, заставляют их активно думать над задачей, развивают настойчивость, упорство, что необходимо во внеклассной работе по математике. Неразрешимые, казалось бы, сложные задачи способствуют повышению умственного труда, упорства, и, как следствие, желанию узнать больше, появлению интереса к предмету.

5. Наконец, различают игры одиночные и универсальные.

К одиночным играм относят те игры, правила которых не допускают изменения содержания игры, они разработаны с учетом особенностей конкретного материала.

Универсальные игры же, наоборот, позволяют менять свое содержание. Они разрабатываются по широкому кругу вопросов школьной программы, могут использоваться в различных целях, на различных внеклассных мероприятиях, и поэтому являются очень ценными.

Приведем еще одну классификацию игр по схожести правил и характера проведения. Данная классификация будет включать в себя следующие виды игр:

o Настольные игры;

o Математические мини-игры;

o Викторины;

o Игры по станциям;

o Математические конкурсы;

o КВНы;

o Игры-путешествия;

o Математические лабиринты;

o Математическая карусель;

o Бои;

o Разновозрастные.

В дальнейшем мы будем рассматривать только эти виды игр.

Некоторые из выше перечисленных видов игр могут быть включены в другие, более большие математические игры, как один из их этапов. Теперь же рассмотрим конкретно каждый вид.

Настольные игры.

К настольным играм относят такие математические игры как математическое лото, игры на шахматной доске, игры со спичками, различные головоломки и т.п. Подготовительный этап таких игр проводится в основном перед самой игрой, на нем разъясняются в основном правила игры. Настольные математические игры не рассматриваются как отдельная форма внеклассного занятия, а используются обычно как часть занятия, могут быть включены в другие математические игры. Дети могут играть в них в любое свободное время, даже на перемене (например, разгадывать какую либо головоломку).

Рассмотрим некоторые из наиболее распространенных настольных игр.

Математическое лото. Правила у игры те же, что и при игре в обычное лото. Каждый из учеников получает карту, на которой написаны ответы. Ведущий игры берет пачку карточек, на которых написаны задания и вытаскивает одну из них. Читает задание, показывает всем участникам игры. Участники решают задания устно или письменно, получают ответ, находят его у себя на игральной карточке. Закрываю этот ответ специально заготовленными фишками. Выигрывает тот, кто первый закроет карточку. Проверка правильности закрытия карты обязательна, она является не только контролирующим моментом, но и обучающим. Можно заготовить жетоны таким образом, что после закрытия всей карты, у учащегося получился с помощью этих жетонов рисунок, тем самым можно проверить правильность закрытия карты. Перед началом игры можно провести разминку, на которой вспоминаются формулы, правила, знания, необходимые для проведения игры.

Игры со спичками. Данные игры могут проводиться в различной форме, но суть у них остается одна, учащимся даются задания, в которых нужно построить фигуру из спичек, путем перемещения одной или нескольких спичек получить другую фигуру. Вопрос игры и заключается в том, какую именно спичку нужно переложить.

Очень нравятся детям игры-головоломки. В них нужно расположить особым образом определенные фигуры или числа в таблице. Возможен и другой вариант такой игры. Например, игра, где из различной формы кусочков бумаги нужно собрать фигуру, да еще попытаться найти, как можно больше различных вариантов сбора.

Так же встречаются настольные игры-поединки между двумя участниками. Это такие игры как крестики-нолики в различных вариациях, игры на шахматной доске, игры с использованием спичек и многие другие. В таких играх необходимо выбрать нужную, выигрышную стратегию. Проблема и заключается в том, что сначала нужно догадаться какая именно стратегия является выигрышной. В математике даже существует такой тип нестандартных задач, где как раз нужно найти выигрышную стратегию игры и обосновывать ее математически (теория игр).

Примером такой игры может служить следующая игра. На стол кладутся спички в ряд. Играют двое игроков. Они по очереди берут одну, две или три спички. Выигрывает тот, кто берет последнюю спичку.

Настольные игры настолько многообразны, что описать их общую структуру очень сложно. Общее у них то, что они в основном не подвижные, индивидуальные, требуют умственного труда. Они захватывают и заинтересовывают учащихся, развивают у них настойчивость и упорство в достижении цели, способствуют возникновению интереса к математике.

Математические мини-игры.

На самом деле настольные игры тоже можно назвать мини-играми, но в них входят в основном «тихие» игры. К этому же виду относятся небольшие подвижные игры, которые могут быть включены как один из этапов в более большие математические игры, так и быть часть внеклассного занятия.

Чем же отличаются эти игры от остальных? В таких играх дети в основном решают задания и получают за это определенное количество очков. Выбор задания проходит в различных игровых формах. К таким играм можно, например, отнести «Математическую рыбалку», «Математическое казино», «Стрельба по мишеням», «Математическое (чертово) колесо» и т.п. Такие игры состоят из следующих этапов. Сначала ученик производит какое-либо игровое действие (вылавливает рыбку из пруда, кидает дротиком в мишень, бросает игральные кости и др.). В зависимости от того, какой будет результат этого действия (какую рыбку поймал, сколько очков выпало на игральных костях, в какую часть мишени попал и др.) ученику выдается определенная задача, которую он должен решить. Решив эту задачу, ученик получает свои заслуженные баллы и право получить новую задачу, совершив при этом соответствующее игровое действие.

В «Математическом казино» ученик бросает кости только после решения задачи, тем самым, определяя свои выигранные баллы. В игре «Математическое (или чертово) колесо» игроки двигаются как бы по кругу, в котором имеется начальный и конечный этап, бросая кости, они тем самым определяют, на какой этап этого колеса они попадают. Не решив задачу, они возвращаются на предыдущий этап и, чтобы вновь получить право бросить кости решают задачу этого этапа. Выигрывает игрок, сумевший выйти из этого круга или набравший большее количество баллов. Огромную роль для выигрыша здесь имеет удача участника игры. Поэтому то эту игру часто называют «Чертовым колесом



Поделиться:


Последнее изменение этой страницы: 2016-07-16; просмотров: 1548; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.189.170.65 (0.012 с.)