Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Психолого-педагогические основы математической игры

Поиск

Математическая игра является одной из форм внеклассной работы по математике. Она используется в системе внеклассной работы для формирования у детей интереса к предмету, приобретения ими новых знаний, умений, навыков, углубление уже имеющихся знаний. Игра наряду с учением и трудом – один из основных видов деятельности человека, удивительный феномен нашего существования.

Что же понимается под словом игра? Термин «игра» многозначен, в широком употреблении границы между игрой и не игрой чрезвычайно размыты. Как справедливо подчеркивал Д. Б. Эльконин [24] и С. А. Шкаков [35], слова «игра» и «играть» употребляются в самых различных смыслах: развлечение, исполнение музыкального произведения или роли в пьесе. Ведущая функция игры – отдых, развлечение. Это свойство как раз и отличает игру от не игры.

Феномен детской игры изучен исследователями довольно широко и разносторонне, как в отечественных разработках, так и за рубежом.

Игра, по мнению многих ученых-психологов, есть вид развивающей деятельности, форма освоения социального опыта, одна из сложных способностей человека.

Российский психолог А.Н. Леонтьев считает игру ведущим типом деятельности ребенка, с развитием которой происходят главные изменения психики детей, подготавливающие переход к новой, высшей степени их развития. Забавляясь и играя, ребенок обретает себя и осознает себя личностью.

Игра, в частности математическая, необычайно информативна и многое «рассказывает» самому ребенку о нем. Она помогает найти ребенком себя в коллективе сотоварищей, в целом обществе, человечестве, во вселенной.

В педагогике к играм относят самые разнообразные действия и формы занятий детей. Игра - это занятие, во-первых, субъективно значимое, приятное, самостоятельное и добровольное, во-вторых, - имеющее аналог в реальной действительности, но отличающаяся своей не утилитарностью и буквальностью воспроизведения, в-третьих, - возникающая спонтанно или создаваемая искусственно для развития каких-либо функций или качеств личности, закрепления достижений или снятия напряжения. Обязательная характерная черта всех игр – особое эмоциональное состояние, на фоне и при участии которого они проходят.[10]

А.С. Макаренко считал, что «игра должна постоянно пополнять знания, быть средством всестороннего развития ребенка, его способностей, вызывать положительные эмоции, пополнять жизнь детского коллектива интересным содержанием».[17]

Можно дать следующее определение игры. Игра – вид деятельности, имитирующий реальную жизнь, имеющий четкие правила и ограниченную продолжительность. Но, несмотря на различия в подходах к определению сущности игры, ее назначения, все исследователи сходятся в одном: игра, в том числе математическая, является способом развития личности, обогащения ее жизненного опыта. Поэтому игра используется как средство, форма и метод обучения и воспитания.

Существует много классификаций и видов игры. Если классифицировать игру по предметным областям, то можно выделить математическую игру. Математическая игра по области деятельности это, прежде всего, интеллектуальная игра, то есть игра, где успех достигается в основном за счет мыслительных способностей человека, его ума, имеющихся у него знаний по математике.

Математическая игра помогает закреплять и расширять предусмотренные школьной программой знания, умения и навыки. Ее настоятельно рекомендуется использовать на внеклассных занятиях и вечерах. Но эти игры не должны восприниматься детьми как процесс преднамеренного обучения, так как это разрушило бы саму сущность игры. Природа игры такова, что при отсутствии абсолютной добровольности, она перестает быть игрой. [19]

В современной школе математическая игра используется в следующих случаях: в качестве самостоятельной технологии* для освоения понятия, темы или даже раздела учебного предмета; как элемент более обширной технологии; в качестве урока или его части; как технология внеклассной работы.

Математическая игра, включенная в занятие, и просто игровая деятельность в процессе обучения оказывают заметное влияние на деятельность учащихся. Игровой мотив является для них действительным подкреплением познавательному мотиву, способствует созданию дополнительных условий для активной мыслительной деятельности учащихся, повышает концентрированность внимания, настойчивость, работоспособность, создает дополнительные условия для появления радости успеха, удовлетворенности, чувства коллективизма.[9]

Математическая игра, да и любая игра в учебно-воспитательном процессе, имеет характеристические черты. С одной стороны, условный характер игры, наличие сюжета или условий, наличие используемых предметов и действий, с помощью которых происходит решение игровой задачи. С другой стороны, свобода выбора, импровизация во внешней и внутренней деятельности позволяют участникам игры получать новую информацию, новые знания, обогащаться новым чувственным опытом и опытом мыслительной и практической деятельности. Через игру, реальные чувства и мысли участников игры, их положительный настрой, реальные действия, творчество возможно успешное решение учебно-воспитательных задач, а именно, формирование положительной мотивации в учебной деятельности, чувства успеха, интереса, активности, потребности в общении, желании достичь лучшего результата, превзойти себя, повысить свое мастерство. [27]

Математические игры как средство развития познавательного интереса к математике

Актуальность

Предмет математики представляет собой связную систему определений, теорем и правил. Каждое новое определение, теорема и правило опираются на предыдущее, ранее введенное, доказанное. Каждая новая задача включает элементы ранее решенной. Такая связность, взаимозависимость и дополняемость всех разделов предмета, нетерпимость к пробелам и пропускам, недопониманию, как в целом, так и в частях, является причиной неуспехов учащихся в обучении математики. Вследствие этих неуспехов возникает потеря интереса к предмету. Но наряду с этим математика это также система задач, для решения каждой из которых требуются умственные усилия, настойчивости, воли и других качеств личности. Эти особенности математики создает благоприятные условия для развития активности мышления, но также они нередко и служат причиной пассивности учащихся. Для таких учеников, не проявляющих интерес к математике, для которых она кажется «скучной», «сухой» наукой и нужно проводить внеклассные занятия в интересной, занимательной форме, в форме математической игры. Первоначально учащихся увлечет сам процесс, а в последствии захочется узнать что-то новое, для того добиться успехов в игре, выиграть.

Известно, что только при наличии как близких мотивов – непосредственно побуждающих учебную деятельность (интересы, поощрения, похвала, оценка и др.), так и далеких – социальных мотивов, ориентирующих ее (долг, потребность, ответственность перед коллективом, осознание общественного значения учения и др.), возможна устойчивая мыслительная деятельность, интерес к предмету. Отсутствие мотивов или ослабление их может привести к пассивности. Нередко имеет место на уроке математике выполнение однообразной, «скучной» работы, выполнение однотипных заданий. В таких случаях интерес к предмету ослабляется, близкие мотивы деятельности отсутствуют, ослаблен мотив практической значимости, т.е. мотивы деятельности в данный момент не имеют для учащихся смысла. Наличие только далеких мотивов, подкрепляющихся словесно, не создает достаточных условий для проявления настойчивости и активности (вычисления остаются не законченными). Подобное можно наблюдать и при решении задач повышенной трудности, которым отводиться большое место на внеклассных занятиях. Эта работа осознается учащимися как полезная и нужная, но трудности иногда оказываются слишком большими и эмоциональный подъем, который наблюдался в начале решения задачи, снижается, ослабляется внимание, воля, снижается интерес и в конечном счете все это приводит к пассивности. [9] В данных ситуациях с большим эффектом могут использоваться математические игры, содержащие элементы соревнования. У учащихся есть цель выиграть, обогнать всех остальных, быть лучшим. Они глубоко сосредотачиваются на задании, упорно решают его. Достигнув успеха, ученик «стремится к преодолению еще более высоких вершин», а неудачи лишь подстегают его к тому, чтобы подготовиться и в следующий раз добиться своей цели. Все это стимулирует у учащихся познавательную активность, интерес.

Активность и интерес к деятельности зависит от характера деятельности и ее организации. Известно, что деятельность, в которой ставятся вопросы, проблемы, требующие самостоятельного решения, деятельность, в процессе которой рождаются положительные эмоции (радость успеха, удовлетворения и др.), чаще всего вызывают интерес, активную познавательную деятельность. И наоборот, деятельность однообразная, рассчитанная на механическое выполнение, запоминание, как правило, не может вызвать интереса, отсутствие положительных эмоций может привести к пассивности. Математические игры разнообразны, требуют самостоятельности и эмоционально насыщены. Использование их на внеклассных занятиях повышает активность учащихся, заряжает положительными эмоциями, способствует возникновению познавательного интереса к предмету. Математическая игра завлекает учащихся. Они с увлечением выполняют различные задания. Учащиеся не задумываются над тем, что во время игры они учатся, занимаются тем же умственным трудом, что и на уроках.

Все это говорит о том, что математическую игру нужно использовать во внеклассной работе по математике для того чтобы воздействовать на пробуждение интеллектуальной активности школьников и формирование у них интереса к предмету.

2.2 Цели, задачи, функции, требования математической игры

Как уже говорилось выше основная цель применения математической игры на внеклассных занятиях о математике – это развитие устойчивого познавательного интереса у учащихся к предмету через разнообразие используемых математических игр.

Так же можно выделить и следующие цели применения математических игр:

o Развитие мышления;

o Углубление теоретических знаний;

o Самоопределение в мире увлечений и профессий;

o Организация свободного времени;

o Общение со сверстниками;

o Воспитание сотрудничества и коллективизма;

o Приобретение новых знаний, умений и навыков;

o Формирование адекватной самооценки;

o Развитие волевых качеств;

o Контроль знаний;

o Мотивация учебной деятельности и др.

Математические игры призванырешать следующие задачи.

Образовательные:

- Способствовать прочному усвоению учащимися учебного материала;

- Способствовать расширению кругозора учащихся и др.

Развивающие:

- Развивать у учащихся творческое мышление;

- Способствовать практическому применению умений и навыков, полученных на уроках и внеклассных занятиях;

- Способствовать развитию воображения, фантазии, творческих способностей и др.

Воспитательные:

- Способствовать воспитанию саморазвивающейся и самореализующейся личности;

- Воспитать нравственные взгляды и убеждения;

- Способствовать воспитанию самостоятельности и воли в работе и др.

Математические игры выполняют различные функции.

1. Во время математической игры происходит одновременно игровая, учебная и трудовая деятельность. Действительно, игра сближает то, что в жизни не сопоставимо и разводит то, что считается едино.

2. Математическая игра требует от школьника, то чтобы он знал предмет. Ведь не умея решать задачи, разгадывать, расшифровывать и распутывать ученик не сможет участвовать в игре.

3. В играх ученики учатся планировать свою работу, оценивать результаты не только чужой, но и своей деятельности, проявлять смекалку при решении задач, творчески подходить к любому заданию, использовать и подбирать нужный материал.

4. Результаты игр показывают школьникам их уровень подготовленности, тренированности. Математические игры помогают в самосовершенствовании учащихся и, тем самым побуждают их познавательную активность, повышается интерес к предмету.

5. Во время участия в математических играх учащиеся не только получают новую информацию, но и приобретают опыт сбора нужной информации и правильного ее применения.

К игровым формам внеклассных занятий предъявляется рад требований.

К участникам математической игры должны предъявляться определенные требования в отношении знаний. В частности, чтобы играть – надо знать. Это требование придает игре познавательный характер.

Правила игры должны быть такими, чтобы учащиеся проявили желание поучаствовать в ней. Поэтому игры должны разрабатываться с учетом возрастных особенностей детей, проявляемых ими интересов в том или ином возрасте, их развития и имеющихся знаний.

Математические игры должны разрабатываться с учетом индивидуальных особенностей учащихся, с учетом различных групп учащихся: слабые, сильные; активные, пассивные и др. Они должны быть такими, чтобы каждый тип учащихся смог проявить себя в игре, показать свои способности, возможности, свою самостоятельность, настойчивость, смекалку, испытать чувство удовлетворенности, успеха.

При разработке игры нужно предусмотреть более легкие варианты игры, задания, для слабых учащихся и наоборот более сложный вариант для сильных учеников. Для совсем слабых учащихся разрабатываются игры, где не нужно думать, а нужна, лишь смекалка. Таким образом, можно привлечь больше учащихся к посещению внеклассных занятий по математике и тем самым способствовать развитию у них познавательного интереса.

Математические игры должны разрабатываться с учетом предмета и его материала. Они должны быть разнообразны. Многообразие видов математических игр поможет повысить эффективность внеклассной работы по математике, послужит дополнительным источником систематических и прочных знаний.

Таким образом, математическая игра как форма внеклассной работы по математике имеет свои цели, задачи и функции. Соблюдение же всех требований предъявляемых к математическим играм позволит добиться хороших результатов по привлечению большего числа учащихся к внеклассной работе по математике, возникновению у них познавательного интереса к ней. Не только сильные учащиеся будут больше проявлять заинтересованность к предмету, но и слабые учащиеся начнут проявлять свою активность в учении.

Виды математических игр

Одним из требований к математическим играм является их многообразие. Можно привести следующую классификацию математических игр по разным основаниям, но она не будет являться строгой, так как каждую игру можно отнести к нескольким видам из этой классификации.

Итак, система математических игр включает следующие виды:

1. По назначению различают обучающие, контролирующие и воспитывающие игры. Также можно выделить развивающие и занимательные.

Участвуя в обучающей игре, школьники приобретают новые знания, навыки. Так же такая игра может служить стимулом для получения новых знаний: ученики вынуждены приобрести новые знания перед игрой; очень заинтересовавшись каким-либо материалом, полученным на игре, ученик может изучить его подробнее уже самостоятельно.

Воспитывающая игра имеет целью воспитать у учащихся отдельные качества личности, такие как внимание, наблюдательность, смекалка, самостоятельность и др.

Для участия в контролирующей игре учащимся достаточно имеющихся у них знаний. Цель такой игры и состоит в том, чтобы школьники закрепили свои полученные знания, проконтролировать их.

Занимательные игры отличаются от других видов тем, что для участия в ней никаких конкретных знаний не надо, нужна только смекалка. Основная цель такой игры это привлечь к математике слабых учеников, не проявляющих интереса к предмету, развлечь.

И последний вид в этой классификации, это развивающие игры. Они в основном предназначены для сильных учеников, увлекающихся математикой. Они развивают нестандартность мышления учеников при решении соответствующих заданий. Такие игры особой развлекательностью не отличаются, являются более серьезными.

Конечно, в практике все эти виды переплетаются между собой, и одна игра может быть одновременно и контролирующей и обучающей, лишь в соотношении между целями можно говорить о принадлежности математической игры к тому или иному виду.

2. По массовости различают коллективные и индивидуальные игры.

Игры подростков чаще всего принимают коллективный характер. Школьникам свойственно чувство коллективизма, у них есть желание участвовать в жизни коллектива в качестве его полноправного члена. Дети стремятся к общению со своими сверстниками, стремятся участвовать с ними в совместной деятельности. Поэтому использование коллективных математических игр во внеклассной работе по математике так необходимо. Они привлекают не только сильных учеников, но и слабых, желающих поучаствовать в игре вместе со своими друзьями. Такие ученики, не проявляющие интереса к математике, в коллективной игре могут добиться успеху, у них появляется чувство удовлетворенности, интерес.

С другой же стороны сильные ученики предпочитают индивидуальные игры, так как они более самостоятельны. Они стремятся к самоанализу, самооценке, и поэтому у них возникает потребность проявить свои индивидуальные возможности, качества. Такие игры связаны обычно с умственным трудом, то есть являются интеллектуальными, в них учащиеся могут проявить свои умственные способности.

Оба вида игр имеет свои особенности и возможности, поэтому о предпочтении какой-нибудь из них говорить нельзя.

3. По реакции выделяют подвижные и тихие игры.

Основной деятельностью учащихся является учеба. Они проводят в школе 5-6 часов на уроках, и дома 2-3 часа уходит на выполнение домашнего задания. Естественно, что их растущий организм требует движения. Поэтому на внеклассных занятиях по математике нужно вводить элементы подвижности. Математическая игра позволяет включить в себя подвижную деятельность и не мешает умственной работе. Действительно, подростковый возраст отличается кипучей деятельностью и энергичностью движений. Наиболее естественное состояние ребенка это движение, и, поэтому использование подвижных математических игр на внеклассных занятиях привлекает детей своей необычностью, им нравится участвовать в такой деятельности, участвуя в ней, они не замечают, что еще и учатся, возникает интерес не только к внеклассной работе по математике, но и к самому предмету.

Тихие же игры служат хорошим средством перехода от одного умственного труда к другому. Они используются перед началом занятия математического кружка, математического вечера, олимпиады и других массовых мероприятий, в конце внеклассного занятия по математике. К тому же встречаются дети, которые предпочитают тихие игры, требующие пытливости ума, настойчивости. Для таких детей подойдут тихие игры, такие как различные головоломки, кроссворды, игры на складывание и разрезание фигур, и многие другие.

4. По темпу выделяют скоростные и качественные игры.

Некоторые математические игры должны принимать форму состязаний, соревнований между командами или на личное первенство, это обусловлено характерной чертой подростков, стремления к различным видам состязаний.

Следует различать два вида состязаний. Во-первых, это игры, в которых победа достигается за счет скорости действий, но это без ущерба качеству решения задач. Например, задания на скорость выполнения вычислений, преобразований, доказательств теорем и т. д. Такие игры называются скоростными. Во-вторых, так же можно выделить игры, победа в которых достигается не за счет скорости выполнения заданий, а за счет качества его выполнения, правильности решения, безошибочности. Такие игры условно называют качественными.

Первый вид игр (скоростные) необходим, когда нужен автоматизм действий, формируется навык быстрого вычисления, выполнения действий, не требующих большого умственного труда. Также элементы скоростных игр могут быть включены в другие математические игры. Использование таких игр сопровождается эмоциональным подъемом, желанием выиграть, стремлением быть не только лучшими, но и самым быстрым, вызывает интерес учащихся.

Качественные же игры направлены на серьезные вычисления, требует вдумчивой работы над трудными задачами, теоремами. Такие игры способствуют пробуждению мыслительной деятельности учащихся, заставляют их активно думать над задачей, развивают настойчивость, упорство, что необходимо во внеклассной работе по математике. Неразрешимые, казалось бы, сложные задачи способствуют повышению умственного труда, упорства, и, как следствие, желанию узнать больше, появлению интереса к предмету.

5. Наконец, различают игры одиночные и универсальные.

К одиночным играм относят те игры, правила которых не допускают изменения содержания игры, они разработаны с учетом особенностей конкретного материала.

Универсальные игры же, наоборот, позволяют менять свое содержание. Они разрабатываются по широкому кругу вопросов школьной программы, могут использоваться в различных целях, на различных внеклассных мероприятиях, и поэтому являются очень ценными.

Приведем еще одну классификацию игр по схожести правил и характера проведения. Данная классификация будет включать в себя следующие виды игр:

o Настольные игры;

o Математические мини-игры;

o Викторины;

o Игры по станциям;

o Математические конкурсы;

o КВНы;

o Игры-путешествия;

o Математические лабиринты;

o Математическая карусель;

o Бои;

o Разновозрастные.

В дальнейшем мы будем рассматривать только эти виды игр.

Некоторые из выше перечисленных видов игр могут быть включены в другие, более большие математические игры, как один из их этапов. Теперь же рассмотрим конкретно каждый вид.

Настольные игры.

К настольным играм относят такие математические игры как математическое лото, игры на шахматной доске, игры со спичками, различные головоломки и т.п. Подготовительный этап таких игр проводится в основном перед самой игрой, на нем разъясняются в основном правила игры. Настольные математические игры не рассматриваются как отдельная форма внеклассного занятия, а используются обычно как часть занятия, могут быть включены в другие математические игры. Дети могут играть в них в любое свободное время, даже на перемене (например, разгадывать какую либо головоломку).

Рассмотрим некоторые из наиболее распространенных настольных игр.

Математическое лото. Правила у игры те же, что и при игре в обычное лото. Каждый из учеников получает карту, на которой написаны ответы. Ведущий игры берет пачку карточек, на которых написаны задания и вытаскивает одну из них. Читает задание, показывает всем участникам игры. Участники решают задания устно или письменно, получают ответ, находят его у себя на игральной карточке. Закрываю этот ответ специально заготовленными фишками. Выигрывает тот, кто первый закроет карточку. Проверка правильности закрытия карты обязательна, она является не только контролирующим моментом, но и обучающим. Можно заготовить жетоны таким образом, что после закрытия всей карты, у учащегося получился с помощью этих жетонов рисунок, тем самым можно проверить правильность закрытия карты. Перед началом игры можно провести разминку, на которой вспоминаются формулы, правила, знания, необходимые для проведения игры.

Игры со спичками. Данные игры могут проводиться в различной форме, но суть у них остается одна, учащимся даются задания, в которых нужно построить фигуру из спичек, путем перемещения одной или нескольких спичек получить другую фигуру. Вопрос игры и заключается в том, какую именно спичку нужно переложить.

Очень нравятся детям игры-головоломки. В них нужно расположить особым образом определенные фигуры или числа в таблице. Возможен и другой вариант такой игры. Например, игра, где из различной формы кусочков бумаги нужно собрать фигуру, да еще попытаться найти, как можно больше различных вариантов сбора.

Так же встречаются настольные игры-поединки между двумя участниками. Это такие игры как крестики-нолики в различных вариациях, игры на шахматной доске, игры с использованием спичек и многие другие. В таких играх необходимо выбрать нужную, выигрышную стратегию. Проблема и заключается в том, что сначала нужно догадаться какая именно стратегия является выигрышной. В математике даже существует такой тип нестандартных задач, где как раз нужно найти выигрышную стратегию игры и обосновывать ее математически (теория игр).

Примером такой игры может служить следующая игра. На стол кладутся спички в ряд. Играют двое игроков. Они по очереди берут одну, две или три спички. Выигрывает тот, кто берет последнюю спичку.

Настольные игры настолько многообразны, что описать их общую структуру очень сложно. Общее у них то, что они в основном не подвижные, индивидуальные, требуют умственного труда. Они захватывают и заинтересовывают учащихся, развивают у них настойчивость и упорство в достижении цели, способствуют возникновению интереса к математике.

Математические мини-игры.

На самом деле настольные игры тоже можно назвать мини-играми, но в них входят в основном «тихие» игры. К этому же виду относятся небольшие подвижные игры, которые могут быть включены как один из этапов в более большие математические игры, так и быть часть внеклассного занятия.

Чем же отличаются эти игры от остальных? В таких играх дети в основном решают задания и получают за это определенное количество очков. Выбор задания проходит в различных игровых формах. К таким играм можно, например, отнести «Математическую рыбалку», «Математическое казино», «Стрельба по мишеням», «Математическое (чертово) колесо» и т.п. Такие игры состоят из следующих этапов. Сначала ученик производит какое-либо игровое действие (вылавливает рыбку из пруда, кидает дротиком в мишень, бросает игральные кости и др.). В зависимости от того, какой будет результат этого действия (какую рыбку поймал, сколько очков выпало на игральных костях, в какую часть мишени попал и др.) ученику выдается определенная задача, которую он должен решить. Решив эту задачу, ученик получает свои заслуженные баллы и право получить новую задачу, совершив при этом соответствующее игровое действие.

В «Математическом казино» ученик бросает кости только после решения задачи, тем самым, определяя свои выигранные баллы. В игре «Математическое (или чертово) колесо» игроки двигаются как бы по кругу, в котором имеется начальный и конечный этап, бросая кости, они тем самым определяют, на какой этап этого колеса они попадают. Не решив задачу, они возвращаются на предыдущий этап и, чтобы вновь получить право бросить кости решают задачу этого этапа. Выигрывает игрок, сумевший выйти из этого круга или набравший большее количество баллов. Огромную роль для выигрыша здесь имеет удача участника игры. Поэтому то эту игру часто называют «Чертовым колесом».

Все эти игры ограничены по времени. В конце игры подсчитываются баллы и определяются победители.

Математические мини-игры как бы имитируют определенную (жизненную) ситуацию: ловля рыбы, игру в казино и другие, благодаря этому мини-игры завлекают детей, у школьников возникает интерес, они стремятся правильно решить как можно больше задач, прилагая к этому все свои силы и знания.

Среди мини-игр также можно выделить небольшую группу игр-соревнований. К таким играм можно отнести, например, «Математическую эстафету», различные конкурсы капитанов, входящие в более крупные математические игры. Это в основном игры на скорость выполнения заданий, но и качество их выполнения играет тоже не последнюю роль. Это могут быть как командные соревнования, так и между двумя участниками. Эти игры насыщены эмоциональными переживаниями, что свойственно обычным соревнованиям, где нужно быстрее и лучше соперника справиться с поставленной задачей. Поэтому они очень нравятся школьникам, и включение их во внеклассные занятия или другие игры по математике способствует развитию интереса учащихся.

Математические викторины.

Казалось бы, этот тип игры тоже мог бы быть включен в предыдущий тип игр, но ярко выраженной игровой ситуации в них не наблюдается. Математические викторины очень часто включаются в математические вечера, в занятии математического кружка, используются как этап другой математической игры.

Математические викторины легко организовать. В них может принять участие каждый желающий. Суть их заключается в том, что участникам задаются вопросы, на которые они должны ответить. Викторины проводятся по-разному, в зависимости от числа участников.

Если участников не очень много, то каждый вопрос или задача зачитываются человеком, проводящим викторину. На обдумывание ответа дается несколько минут. Отвечает тот, кто первым поднимет руку. Если ответ не полный, то можно предоставить возможность высказаться еще и другому участнику. За правильный ответ присуждается определенное количество очков.

Если же участников много, то текст всех вопросов и задач выписываются на доске, на отдельных плакатах или раздаются школьникам на отдельных листах, где они пишут ответы и краткое объяснение. Потом листочки сдаются жюри, где они проверяются, подсчитываются баллы.

Победителями становятся участники, набравшие наибольшее количество баллов.

Возможны случаи, когда викторины проводятся для команд. В этом случае каждой команде зачитывается определенное количество вопросов, возможны варианты ответов на них. Участники команд должны за определенное время ответить правильно на как можно большее количество вопросов. Выигрывает команда, давшая больше правильных ответов. Вопросы, задаваемые командам должны быть равноценными.

С помощью викторин можно не только заинтересовать учащихся математикой, используя необычной формы вопросы, но и проконтролировать уровень их знаний предмета (особенно в том случае, когда она проходит в письменной форме).

Рассмотренные выше игры могут включаться во внеклассные занятия по отдельности, а могут и в своей совокупности составлять большой блок игр, занятие в игровой форме, то есть большую математическую игру. Эта игра может быть проведена в различных формах. В зависимости от характера проведения таких игр различают следующие виды:

Игры по станциям.

В играх данного типа обычно перед участниками ставиться определенная игровая цель, в зависимости от общего сюжета игры, ее темы. Это может быть цель найти клад, собрать карту, дойти до конечной станции (таинственного города) и т.п.

Как видно из названия данные игры проводятся по станциям. В такой игре обычно участвуют команды, и именно они ходят по станциям, выполняют на каждой из них определенные задания и получают за это баллы, часть карты, либо подсказки, помогающие достичь участникам поставленной перед ними цели. Каждая из станций представляет собой небольшую игру. Команды ходят по станциям, пользуясь специально выданными им листами-путеводителями. Игра по станциям проходит обычно в нескольких кабинетах, в которых располагаются различные станции. В таких играх участвуют обычно несколько классов, поэтому они являются массовыми и продолжительными по времени. Для проведения такой игры требуется много людей. В школе для проведения подобной игры по станциям могут привлекаться старшие классы. Итогом игры является достигнутая командами цель игры.

Игры такого вида имеют необычный сюжет и часто являются театрализованными, то есть в ее начале разыгрывается какая-нибудь ситуация с помощью которой перед участниками ставится цель игры. Отдельные станции, по которым будут ходить участники, тоже могут быть театрализованы. Эта необычность очень привлекает и заинтересовывает не только участников игры, но и учеников принимающих участие в проведении игры. У школьников возникает интерес к математике, они по новому воспринимают этот, казалось бы, «скучный» и «сухой», неинтересный предмет.

К такому виду игр можно отнести «Математические следопыты», «Математический поезд», «Математический кросс» и другие.

Математические конкурсы.

Математические конкурсы можно рассматривать как часть большой игры или вечера (например, конкурс капитанов). Так же конкурс можно рассматривать как соревнование по выполнению какой-либо работы или проекта (конкурс на лучшую математическую сказку, конкурс на лучшую математическую газету и т.п.). Здесь же будут рассматриваться математические конкурсы как отдельные самостоятельные мероприятия, математические игры, в состав которых могут входить как их элементы другие более мелкие математические игры (например, викторины, эстафеты и др.).

Математические конкурсы – это соревнования, которые могут проводиться как между отдельными участниками игры, так и между командами. Это наиболее часто используемый тип математических игр. К нему можно отнести такие игры как «Звездный час», «Счастливый случай», «Колесо математики» и другие.

В конкурсе всегда есть победитель и он единственный, возможен случай и ничьей. При проведении математических конкурсов обычно присутствуют не только сами участники игры, но и зрители, болеющие за них. Поэтому в таких видах игр всегда предусмотрены и задания (конкурсы) для зрителей.

Особой подготовки участников к игре не требуется. В основном нужно лишь собрать команду и разобрать примерные задания. Данный тип игр настолько разнообразен и универсален, что позволяет проводить внеклассные занятия по математике как можно чаще в форме математической игре, и тем самым привлечь к ним больше учеников. Школьники заинтересовываются и даже иногда сами изъявляют желание придумать свою математическую игру и провести ее.

КВНы.

КВН – это тоже математический конкурс. Но он настолько популярен и необычен, что отнесем его в отдельную группу математических игр.

КВНы проводятся между несколькими командами. Эти команды заранее готовятся к игре, придумывают приветствие другим командам, домашнее задание, в виде представления.

Сам КВН тоже может проводиться в виде какого-нибудь представления, разыгрываются небольшие сценки между конкурсами, может быть в форме путешествия. Помещение, в котором проходит игра, ярко и красочно оформляется. На КВНах обычно присутствуют зрители, поэтому предусматривается и конкурс для зрителей. Так же эта игра предполагает наличие жюри.

Все КВНы строятся приблизительно по одному плану, в которых входят традиционные конкурсы:

1. Приветствие. В этом конкурсе команда должна пояснить свое название, рассказать о членах команды, обратиться к соперникам и жюри.

2. Разминка (для команд и болельщиков). Командам даются задания, на которые они должны как можно быстрее ответить. Может проходить в форме викторины.

3. Пантомима. В этом конкурсе обыгрываются различные математические понятия.

4. Конкурс художников. В этом конкурсе нужно изобразить, используя геометрические фигуры, графики функций и т.п., изобразить что-либо, а так же придумать рассказ по своему рисунку.

5. Домашнее задание. Оно должно соответствовать теме КВНа и быть представлено в виде сценки, песни или стихотворения.

6. Конкурс капитанов. Капитанам команд предлагается решить более сложные задачи, чем в разминке. Этот конкур может пройти в форме какой-нибудь небольшой игры-со



Поделиться:


Последнее изменение этой страницы: 2016-07-16; просмотров: 890; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.226.187.194 (0.021 с.)