Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Математические способности и личностьСодержание книги
Поиск на нашем сайте
Прежде всего следует отметить характеризующее способных математиков и совершенно необходимое для успешной деятельности в области математики «единство склонностей и способностей в призвании», выражающееся в избирательно-положительном отношении к математике, наличии глубоких и действенных интересов в соответствующей области, стремлении и потребности заниматься ею, страстной увлеченности делом. Нельзя стать творческим работником в области математики, не переживая увлеченности этой работой, — она порождает стремление к поискам, мобилизует трудоспособность, активность. Без склонности к математике не может быть подлинных способностей к ней. Если ученик не чувствует никакой склонности к математике, то даже хорошие способности вряд ли обеспечат вполне успешное овладение математикой. Роль, которую здесь играют склонность, интерес, сводится к тому, что интересующийся математикой человек усиленно занимается ею, а следовательно, энергично упражняет и развивает свои способности. На это указывают постоянно сами математики, об этом свидетельствуют вся их жизнь и творчество... Составленные нами характеристики одаренных учащихся ярко свидетельствуют о том, что способности действенно развиваются только при наличии склонностей или даже своеобразной потребности в математической деятельности (в относительно элементарных ее формах). Все без исключения наблюдаемые нами дети обладали обостренным интересом к математике, склонностью заниматься ею, ненасытным стремлением к приобретению знаний по математике, решению задач. Но если способности, как правило, связаны со склонностью, то это не носит все-таки характера всеобщего закона. Ошибочно было бы, скажем, диагностировать наличие или отсутствие Способностей по тому, имеется ли и как ярко выражена склонность к соответствующему виду деятельности. В отдельных случаях здесь может быть и расхождение... В школе нередко встречаются такие случаи: способный к математике ученик мало интересуется ею и не проявляет особых успехоз в овладении этим предметом. Но если учитель сумеет пробудить у него интерес к математике и склонность заниматься ею, то такой ученик, «захваченный» математикой, может быстро добиться больших успехов. Подобные случаи имели место и в жизни известных ученых-математиков (Н. И. Лобачевский, М. В. Остроградский, Н. Н. Лузин и другие). ...Переживаемые человеком эмоции являются важным фактором развития способностей к любой деятельности, не исключая и математической. Радость творчества, чувство удовлетворения от напряженной умственной работы, эмоциональное наслаждение этим процессом повышают умственный тонус человека, мобили- зук>т его силы,: заставляют преодолевать трудности. Равнодушный человек ие может быть творцом. Все изученные нами одаренные дети отличались глубоким эмоциональным отношением к; математической деятельности, переживали настоящую радость, вызванную каждым новым достижением.,<...> Большое значение в математическом творчестве имеют своеобразные эстетические чувства. Известный математик А. Пуанкаре писал о подлинно эстетическом чувстве, которое переживают математики, — чувстве математической красоты, гармонии чисел и форм, о чувстве геометрического изящества. «Математик творит, потому что красота мыслительных построений приносит ему радость», — писал Г. Ревеш. Это переживание изящества решения было очень характерным для наблюдаемых нами способных учащихся. «Красивое решение!», «Вот этот прием, как хорошая шахматная комбинация, вызывает у меня чувство удовольствия»,— говорили школьники. И весь нх облик свидетельствовал о переживаемом ими эстетическом чувстве — их глаза радостно блестели, они довольно потирали руки, смеялись, приглашали друг друга полюбоваться остроумным ходом мыслн, особенно «изящным» решением. Возможность полного и интенсивного развития математических способностей, как и способностей вообще, всецело зависит от уровня развития характерологических черт, особенно волевых черт характера. <...;> Как бы нн были блестящи способности человека, но если у него нет привычки усидчиво и упорно работать, он вряд ли способен достигнуть больших успехов в деятельности. Он в лучшем случае так н останется лишь потенциально способным... Упорство, настойчивость, работоспособность, трудолюбие постоянно проявлялись в математической деятельности наблюдаемых нами одаренных учащихся... Впрочем, бывают и исключения. Некоторые школьники, обладающие математическими способностями, ошибочно считают, что в области математики им не надо особенно трудиться, так как способности нх «вывезут». Учителя и родители должны постоянно убеждать их в том, что овладение математикой даже при наличии способностей требует трудолюбия, настойчивости, усидчивости, должны терпеливо воспитывать этн качества, побуждать школьников не отступать перед трудностями прн решении математических задач, доводить дело до конца. <...> Разумеется, все сказанное выше о характерологических чертах ученого-математика надо понимать в том смысле, что указанные черты могут проявляться избирательно, только в математической деятельности, не характеризуя других сторон его жизнн и деятельности. Совершенно правильно указывают А. Г. Ковалев и В. Н. Мясищев, что ученый, в том числе н математик, может иметь слабую волю, плохую работоспособность, бысгро утомляться, но в математической деятельности он же может проявлять совсем другие черты: высокую организованность, настойчивость, работоспособность. Еще одна черта Характера свойственна подлинному ученому — критическое Отношение к себе, своим возможностям, своим достижениям, скромность, правильное отношение к своим способностям. Надо иметь в виду, что при неправильном отношении к способному школьнику —захваливании его, чрезмерном преувеличении его достижений, афишировании его способностей, подчеркивании его превосходства над другими — очень легко внушить ему веру в свою избранность, исключительность, заразить его «стойким вирусом зазнайства». <...> И наконец, последнее. Математическое развитие человека невозможно без повышения уровня его общей культуры. Нужно всегда стремиться к всестороннему, гармоничному развитию личности. Своеобразный «нигилизм» ко всему, кроме математики, резко одностороннее, «однобокое» развитие способностей не могут способствовать успешности в математической деятельности. Анализируя схему структуры математической одаренности, мы можем заметить, что определенные моменты в характеристике перцептивной, интеллектуальной и мнемической сторон математической деятельности имеют общее значение... Поэтому развернутую схему структуры можно представить и в иной, чрезвычайно сжатой формуле: математическая одаренность характеризуется обобщенным, свернутым и гибким мышлением в сфере математических отношений, числовой и знаковой символики н математическим складом ума. Эта особенность математического мышления приводит к увеличению скорости переработки математической информации (что связано с заменой большого объема информации малым объемом — за счет обобщения и свертывания) и, следовательно, экономии нервио-психических сил... Указанные способности в разной степени выражены у способных, средних н неспособных учеников. У способных при некоторых условиях такие ассоциации образуются «с места», при минимальном количестве упражнений. У неспособных же они образуются с чрезвычайным трудом. Для средних же учащихся необходимым условием постепенного образования таких ассоциаций является системе специально организованных упражнений, тренировка <...>
|
||||
Последнее изменение этой страницы: 2016-12-09; просмотров: 163; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.138.67.56 (0.006 с.) |