Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Технические аспекты многомерного хранения данных↑ ⇐ ПредыдущаяСтр 12 из 12 Содержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
В многомерных хранилищах данных содержатся агрегатные данные различной степени подробности, например, объемы продаж по дням, месяцам, годам, по категориям товаров и т.п. Цель хранения агрегатных данных — сократить время выполнения запросов, поскольку в большинстве случаев для анализа и прогнозов интересны не детальные, а суммарные данные. Поэтому при создании многомерной базы данных всегда вычисляются и сохраняются некоторые агрегатные данные. Отметим, что сохранение всех агрегатных данных не всегда оправданно. Дело в том, что при добавлении новых измерений объем данных, составляющих куб, растет экспоненциально (иногда говорят о «взрывном росте» объема данных). Если говорить более точно, степень роста объема агрегатных данных зависит от количества измерений куба и членов измерений на различных уровнях иерархий этих измерений. Для решения проблемы «взрывного роста» применяются разнообразные схемы, позволяющие при вычислении далеко не всех возможных агрегатных данных достичь приемлемой скорости выполнения запросов. Как исходные, так и агрегатные данные могут храниться либо в реляционных, либо в многомерных структурах. Поэтому в настоящее время применяются три способа хранения данных: · MOLAP (Multidimensional OLAP) –— исходные и агрегатные данные хранятся в многомерной базе данных. Хранение данных в многомерных структурах ЭШеляяет манипулировать данными как многомерным массивом, благодаря чему скорость вычисления агрегатных значений одинакова для любого из измерений. Однако в этом случае многомерная база данных оказывается избыточной, так как многомерные данные полностью содержат исходные реляционные данные. · ROLAP (Relational OLAP) — исходные данные остаются в той же реляционной базе данных, где они изначально и находились. Агрегатные же данные помещают в специально созданные для их хранения служебные таблицы в той же базе данных. · HOLAP (Hybrid OLAP) — исходные данные остаются в той же реляционной базе данных, где они изначально находились, а агрегатные данные хранятся в многомерной базе данных. Некоторые OLAP-средства поддерживают хранение данных только в реляционных структурах, некоторые — только в многомерных. Однако большинство современных серверных OLAP-средств поддерживают все три способа хранения данных. Выбор способа хранения зависит от объема и структуры исходных данных, требований к скорости выполнения запросов и частоты обновления OLAP-кубов. Отметим также, что подавляющее большинство современных OLAP-средств не хранит «пустых» значений (примером «пустого» значения может быть отсутствие продаж сезонного товара вне сезона). Заключение В данном разделе мы рассмотрели типичную структуру реляционных хранилищ данных. Итак, теперь мы знаем, что: · типичная структура хранилища данных существенно отличается от структуры обычной реляционной СУБД — как правило, она денормализована; · основными составляющими структуры хранилищ данных являются таблица фактов (fact table) и таблицы измерений (dimension tables); · таблица фактов является основной таблицей хранилища данных. Обычно она содержит сведения об объектах или событиях, совокупность которых будет в дальнейшем анализироваться; таблица фактов, как правило, содержит уникальный составной ключ, состоящий из первичных ключей таблиц измерений. При этом как ключевые, так и некоторые неключевые ее поля должны соответствовать будущим измерениям OLAP-куба. Помимо этого таблица фактов содержит одно или несколько числовых полей, на основании которых в дальнейшем вычисляются агрегатные данные; таблицы измерений содержат неизменяемые либо редко изменяемые данные — как правило, по одной записи для каждого члена нижнего уровня иерархии в измерении; · таблицы измерений содержат как минимум одно описательное поле и, как правило, целочисленное ключевое поле для однозначной идентификации члена измерения; · каждая таблица измерений должна находиться в отношении «один ко многим» с таблицей фактов; · если каждое измерение содержится в одной таблице измерений, такая схема хранилища данных носит название «звезда». Если же хотя бы одно измерение содержится в нескольких связанных таблицах, такая схема хранилища данных носит название «снежинка». Далее мы обсудили особенности клиентских и серверных OLAP-средств. Мы узнали, что: · клиентские OLAP-средства представляют собой приложения, осуществляющие вычисление агрегатных данных (сумм, средних величин, максимальных или минимальных значений) и их отображение, при этом сами агрегатные данные содержатся в КЭШе внутри адресного пространства такого OLAP-средства; · в серверных OLAP-средствах сохранение и изменение агрегатных данных, а также поддержка содержащего их хранилища осуществляются отдельным приложением или процессом, называемым OLAP-сервером; · в случае применения серверных средств вычисление и хранение агрегатных данных происходят на сервере, что позволяет в общем случае снизить требования к ресурсам, потребляемым клиентским приложением, а также сетевой трафик и время выполнения запросов. · наконец, мы рассмотрели различные технические аспекты многомерного хранения данных. Мы узнали, что в настоящее время применяются три способа хранения данных: o MOLAP (Multidimensional OLAP) — и детальные, и агрегатные данные хранятся в многомерной базе данных. В этом случае многомерные данные полностью содержат исходные детальные данные; o ROLAP (Relational OLAP) — детальные данные остаются в той же реляционной базе данных, где они находились изначально. Агрегатные же данные помещаются в специально созданные для их хранения служебные таблицы в той же самой базе данных; o HOLAP (Hybrid OLAP) — детальные данные остаются в той же реляционной базе данных, где они и находились изначально, а агрегатные данные хранятся в многомерной базе данных. Мы также узнали, что подавляющее большинство современных OLAP-средств не хранит «пустых» значений.
Data mining
Понятие "добыча данных" определяется как процесс аналитического исследования больших массивов информации (обычно экономического характера) с целью выявления определенных закономерностей и систематических взаимосвязей между переменными, которые затем можно применить к новым совокупностям данных. Этот процесс включает три основных этапа: исследование, построение модели или структуры и ее проверку. В идеальном случае, при достаточном количестве данных можно организовать итеративную процедуру для построения устойчивой (робастной) модели. В то же время, в реальной ситуации практически невозможно проверить экономическую модель на стадии анализа и поэтому начальные результаты имеют характер эвристик, которые можно использовать в процессе принятия решения (например, "Имеющиеся данные свидетельствуют о том, что у женщин частота приема снотворных средств увеличивается с возрастом быстрее, чем у мужчин."). Методы добычи данных приобретают все большую популярность в качестве инструмента для анализа экономической информации, особенно в тех случаях, когда предполагается, что из имеющихся данных можно будет извлечь знания для принятия решений в условиях неопределенности. Хотя в последнее время возрос интерес к разработке новых методов анализа данных, специально предназначенных для сферы бизнеса (например, Деревья классификации), в целом системы добычи данных по-прежнему основываются на классических принципах разведочного анализа данных (РАД) и построения моделей и используют те же подходы и методы. Имеется, однако, важное отличие процедуры добычи данных от классического разведочного анализа данных (РАД): системы добычи данных в большей степени ориентированы на практическое приложение полученных результатов, чем на выяснение природы явления. Иными словами, при добыче данных нас не очень интересует конкретный вид зависимостей между переменными задачи. Выяснение природы участвующих здесь функций или конкретной формы интерактивных многомерных зависимостей между переменными не является главной целью этой процедуры. Основное внимание уделяется поиску решений, на основе которых можно было бы строить достоверные прогнозы. Таким образом, в области добычи данных принят такой подход к анализу данных и извлечению знаний, который иногда характеризуют словами "черный ящик". При этом используются не только классические приемы разведочного анализа данных, но и такие методы, как нейронные сети, которые позволяют строить достоверные прогнозы, не уточняя конкретный вид тех зависимостей, на которых такой прогноз основан. Очень часто добыча данных трактуется как "смесь статистики, методов искусственного интеллекта (ИИ) и анализа баз данных" (Pregibon, 1997, p. 8), и до последнего времени она не признавалась полноценной областью интереса для специалистов по статистике, а порой ее даже называли "задворками статистики" (Pregibon, 1997, p. 8). Однако, благодаря своей большой практической значимости, эта проблематика ныне интенсивно разрабатывается и привлекает большой интерес (в том числе и в ее статистических аспектах), и в ней достигнуты важные теоретические результаты.
Разведочный анализ данных (РАД)
В отличие от традиционной проверки гипотез, предназначенной для проверки априорных предположений, касающихся связей между переменными (например, "Имеется положительная корреляция между возрастом человека и его/ее нежеланием рисковать"), разведочный анализ данных (РАД) применяется для нахождения связей между переменными в ситуациях, когда отсутствуют (или недостаточны) априорные представления о природе этих связей. Как правило, при разведочном анализе учитывается и сравнивается большое число переменных, а для поиска закономерностей используются самые разные методы. Методы многомерного разведочного анализа специально разработаны для поиска закономерностей в многомерных данных (или последовательностях одномерных данных). К ним относятся: кластерный анализ, факторный анализ, анализ дискриминантных функций, многомерное шкалирование, логлинейный анализ, канонические корреляции, пошаговая линейная и нелинейная (например, логит) регрессия, анализ соответствий, анализ временных рядов и деревья классификации. Кластерный анализ Термин кластерный анализ (впервые ввел Tryon, 1939) в действительности включает в себя набор различных алгоритмов классификации. Общий вопрос, задаваемый исследователями во многих областях, состоит в том, как организовать наблюдаемые данные в наглядные структуры, т.е. развернуть таксономии. Например, биологи ставят цель разбить животных на различные виды, чтобы содержательно описать различия между ними. В соответствии с современной системой, принятой в биологии, человек принадлежит к приматам, млекопитающим, амниотам, позвоночным и животным. Заметьте, что в этой классификации, чем выше уровень агрегации, тем меньше сходства между членами в соответствующем классе. Человек имеет больше сходства с другими приматами (т.е. с обезьянами), чем с "отдаленными" членами семейства млекопитающих (например, собаками) и т.д. Техника кластеризации применяется в самых разнообразных областях. Хартиган (Hartigan, 1975) дал прекрасный обзор многих опубликованных исследований, содержащих результаты, полученные методами кластерного анализа. Например, в области медицины кластеризация заболеваний, лечения заболеваний или симптомов заболеваний приводит к широко используемым таксономиям. В области психиатрии правильная диагностика кластеров симптомов, таких как паранойя, шизофрения и т.д., является решающей для успешной терапии. В археологии с помощью кластерного анализа исследователи пытаются установить таксономии каменных орудий, похоронных объектов и т.д. Известны широкие применения кластерного анализа в маркетинговых исследованиях. В общем, всякий раз, когда необходимо классифицировать "горы" информации к пригодным для дальнейшей обработки группам, кластерный анализ оказывается весьма полезным и эффективным. Общие методы кластерного анализа: · Объединение (древовидная кластеризация), · Двувходовое объединение · Метод K средних.
|
||||
Последнее изменение этой страницы: 2016-12-16; просмотров: 486; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.12.34.96 (0.008 с.) |