Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Хранилище данных (в узком смысле)Содержание книги
Поиск на нашем сайте
Хранилище данных (в узком смысле) представляет собой предметно-ориентированную базу или совокупность БД, извлекаемых из источников, которые организованы по сегментам, отражающим конкретную предметную область бизнеса: производство, правило, детальные слабо агрегированные данные. Оперативный склад данных (Operational Data Store - ODS) В литературе существуют разные определения этого класса данных. В частности под оперативным складом данных можно подразумевать технологический элемент хранения данных в СППР, который служит буфером между транзакционными источниками данных и хранилищем. Как было уже отмечено ранее, данные, прежде чем попасть в хранилище, должны быть преобразованы в единые форматы, очищены, объединены и синхронизированы. Например, данные, необходимые для поддержки принятия решения, могут существовать в транзакционной системе более короткое время (часы, дни), чем период пополнения данных хранилища (дни, недели). Или семантически однородные данные поступают из транзакционных систем в разное время. В этом случае оперативный склад данных служит аккумулятором данных, поступающих от источников, перед их загрузкой в хранилище. В отличие от хранилища данных информация в складе данных может изменяться со временем в соответствии с изменениями, происходящими в источниках данных. Оперативный склад данных создается как промежуточный буфер между оперативными системами и хранилищем данных. Эта конструкция, аналогичная конструкции хранилища данных. Идентичность оперативного склада и хранилища данных состоит в их предметной ориентированности и хранении детальных данных. Отличие от хранилища данных состоит в том, что оперативный склад данных: · имеет изменяемое содержимое, · содержит только детальные данные, · содержит текущие значения данных. Детальные данные — это данные из оперативных и внешних систем, не подвергавшиеся операциям обобщения, суммирования, т.е. данные, не изменившие своей семантики. Из оперативных систем и внешних источников данные поступают в оперативный склад, проходя процессы трансформации. Данные оперативного склада регулярно обновляются. Каждый раз, когда данные изменяются в оперативных системах и внешних источниках, соответствующие им данные из оперативного склада также должны быть изменены. Частота обновления оперативного склада зависит как от частоты обновления источников, так и от регламента загрузки данных в склад.
Витрины данных (Data mart) Функционально ориентированные витрины данных представляют собой структуры данных, обеспечивающие решение аналитических задач в конкретной функциональной области или подразделении компании, например управление прибыльностью, анализ рынков, анализ ресурсов и проч. Иногда эти структуры хранения данных называют также киосками данных. Витрины данных можно рассматривать как маленькие хранилища, которые создаются с целью информационного обеспечения аналитических задач конкретных управленческих подразделений компании. Как правило, витрина содержит значительно меньше данных, охватывает всего несколько предметных областей и имеет более короткую историю. Витрины данных можно представить в виде логически или физически разделенных подмножеств хранилищ данных. Обычно они строятся для обслуживания нужд определенной группы пользователей. Источником данных для витрин служат данные хранилища, которые, как правило, агрегируются и консолидируются по различным уровням иерархии. Детальные данные могут также помещаться в витрину или присутствовать в ней в виде ссылок на данные хранилища. Различные витрины данных содержат разные комбинации и выборки одних и тех же детализированных данных хранилища. Важно, что данные витрины поступают из центрального хранилища данных — единого "источника истины". Метаданные Метаданные — это любые данные о данных. Метаданные играют важную роль в построении Систем Поддержки Принятия Решений (СППР). Одновременно это один из наиболее сложных и недостаточно практически проработанных объектов. В общем случае можно выделить по крайней мере три аспекта метаданных, которые должны присутствовать в системе.
· метаданные для бизнес-аналитиков, · метаданные для администраторов, · метаданные для разработчиков.
· структуры данных хранилища, · модели бизнес-процессов, · описания пользователей, · технологические и пр.
· метаданные о процессах трансформации, · метаданные по администрированию системы, · метаданные о приложениях, метаданные о представлении данных · пользователям. Присутствие трех перечисленных аспектов метаданных подразумевает, что, например, прикладные пользователи и разработчики системы будут иметь различное видение технологических аспектов трансформации данных из источников: прикладные пользователи - семантику, состав и периодичность пополнения хранилища данными из источника, разработчики - ER-диаграммы, правила трансформации и интерфейс доступа к данным источника. В настоящее время отсутствует единая промышленная технология проектирования, создания и сопровождения метаданных. Поэтому вопросы, связанные с управлением метаданными, рассматриваются отдельно, применительно к каждому конкретному проекту построения СППР. Компоненты хранилища Хранилище на самом верхнем уровне состоит, как правило, из трех подсистем: · подсистемы загрузки данных, · подсистемы обработки запросов и представления данных, · подсистемы администрирования хранилища. Подсистема загрузки данных Данная подсистема представляет собой ПО, которое в соответствии с определенным регламентом извлекает данные из источников и приводит их к единому формату, определенному для хранилища. Данная подсистема отвечает за формализованную логическую согласованность, качество и интеграцию данных, которые загружаются из источников в оперативный склад данных. Каждый источник данных требует разработки собственного загрузочного модуля. Каждый модуль должен решать два класса задач: · Начальной загрузки ретроспективных данных, · Регламентного пополнения хранилища данными из источников. Данная подсистема также по регламенту извлекает детальные данные из оперативного склада, производит их агрегирование, консолидацию, трансформацию и помещает данные в хранилище и витрины данных. Именно в данной подсистеме должны быть определены все бизнес-модели консолидации данных по иерархическим измерениям и вычисления зависимых бизнес-показателей по независимым исходным данным.
|
||||||
Последнее изменение этой страницы: 2016-12-16; просмотров: 324; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.144.254.149 (0.011 с.) |