Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Уравнение плоскости, проходящей через три заданные точки, не лежащие на одной прямой↑ ⇐ ПредыдущаяСтр 2 из 2 Содержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Если заданы координаты трех точек A(x1, y1, z1) B(x2, y2, z2) и C(x3, y3, z3), лежащих на плоскости, то уравнение плоскости можно найти по следующей формуле
13.Угол между плоскостями, расстояние от точки до плоскости.
Пусть плоскости α и β пересекаются по прямой с. Другими словами, в плоскости α мы провели прямую а, перпендикулярную с. В плоскости β — прямую b, также перпендикулярную с. Угол между плоскостями α и β равен углу между прямыми а и b. Заметим, что при пересечении двух плоскостей вообще-то образуются четыре угла. Видите их на рисунке? В качестве угла между плоскостями мы берем острый угол. Если угол между плоскостями равен 90 градусов, то плоскости перпендикулярны, Это определение перпендикулярности плоскостей. Решая задачи по стереометрии, мы используем также признак перпендикулярности плоскостей: Если плоскость α проходит через перпендикуляр к плоскости β, то плоскости α и β перпендикулярны.
расстояние от точки до плоскости Теорема Рассмотрим точку T, заданную своими координатами: T = (x0, y0, z0) Также рассмотрим плоскость α, заданную уравнением: Ax + By + Cz + D = 0 Тогда расстояние L от точки T до плоскости α можно считать по формуле: Другими словами, мы подставляем координаты точки в уравнение плоскости, а затем делим это уравнение на длину вектора-нормали n к плоскости: n = (A, B, C) Полученное число и есть расстояние. Давайте посмотрим, как эта теорема работает на практике.
14.Прямая в пространстве, ее параметрическое уравнение.
Мы уже выводили параметические уравнения прямой на плоскости, давайте получим параметрические уравнения прямой, которая задана в прямоугольной системе координат в трехмерном пространстве. Пусть в трехмерном пространстве зафиксирована прямоугольная система координат Oxyz. Зададим в ней прямую a (смотрите раздел способы задания прямой в пространстве), указав направляющий вектор прямой и координаты некоторой точки прямой . От этих данных будем отталкиваться при составлении параметрических уравнений прямой в пространстве.
Пусть - произвольная точка трехмерного пространства. Если вычесть из координат точки М соответствующие координаты точки М1, то мы получим координаты вектора (смотрите статью нахождение координат вектора по координатам точек его конца и начала), то есть, . Очевидно, что множество точек определяет прямую а тогда и только тогда, когда векторы и коллинеарны. Запишем необходимое и достаточное условие коллинеарности векторов и : , где - некоторое действительное число. Полученное уравнение называется векторно-параметрическим уравнением прямой в прямоугольной системе координат Oxyz в трехмерном пространстве. Векторно-параметрическое уравнение прямой в координатной форме имеет вид и представляет собой параметрические уравнения прямой a. Название "параметрические" не случайно, так как координаты всех точек прямой задаются с помощью параметра . Приведем пример параметрических уравнений прямой в прямоугольной системе координат Oxyz в пространстве: . Здесь
15.Угол между прямой и плоскостью. Точка пересечения прямой с плоскостью.
Всякое уравнение первой степени относительно координат x, y, z Ax + By + Cz +D = 0 (3.1) задает плоскость, и наоборот: всякая плоскость может быть представлена уравнением (3.1), которое называется уравнением плоскости. Вектор n (A, B, C), ортогональный плоскости, называется нормальным вектором плоскости. В уравнении (3.1) коэффициенты A, B, C одновременно не равны 0. Особые случаи уравнения (3.1): 1. D = 0, Ax+By+Cz = 0 - плоскость проходит через начало координат. 2. C = 0, Ax+By+D = 0 - плоскость параллельна оси Oz. 3. C = D = 0, Ax +By = 0 - плоскость проходит через ось Oz. 4. B = C = 0, Ax + D = 0 - плоскость параллельна плоскости Oyz. Уравнения координатных плоскостей: x = 0, y = 0, z = 0. Прямая в пространстве может быть задана: 1) как линия пересечения двух плоскостей,т.е. системой уравнений: A1 x + B1 y + C1 z + D1 = 0, A2 x + B2 y + C2 z + D2 = 0; (3.2) 2) двумя своими точками M1(x1, y1, z1) и M2(x2, y2, z2), тогда прямая, через них проходящая, задается уравнениями: = ; (3.3) 3) точкой M1(x1, y1, z1), ей принадлежащей, и вектором a (m, n, р), ей коллинеарным. Тогда прямая определяется уравнениями: . (3.4) Уравнения (3.4) называются каноническими уравнениями прямой. Вектор a называется направляющим вектором прямой.
Параметрические уравнения прямой получим, приравняв каждое из отношений (3.4) параметру t: x = x1 +mt, y = y1 + nt, z = z1 + рt. (3.5) Решая систему (3.2) как систему линейных уравнений относительно неизвестных x и y, приходим к уравнениям прямой в проекциях или к приведенным уравнениям прямой: x = mz + a, y = nz + b. (3.6) От уравнений (3.6) можно перейти к каноническим уравнениям, находя z из каждого уравнения и приравнивая полученные значения: . От общих уравнений (3.2) можно переходить к каноническим и другим способом, если найти какую-либо точку этой прямой и ее направляющий вектор n = [ n 1, n 2], где n 1(A1, B1, C1) и n 2(A2, B2, C2) - нормальные векторы заданных плоскостей. Если один из знаменателей m, n или р в уравнениях (3.4) окажется равным нулю, то числитель соответствующей дроби надо положить равным нулю, т.е. система
равносильна системе ; такая прямая перпендикулярна к оси Ох. Система равносильна системе x = x1, y = y1; прямая параллельна оси Oz. Пример 1.15. Cоставьте уравнение плоскости, зная, что точка А(1,-1,3) служит основанием перпендикуляра, проведенного из начала координат к этой плоскости. Решение. По условию задачи вектор ОА (1,-1,3) является нормальным вектором плоскости, тогда ее уравнение можно записать в виде Пример 1.16. Составьте уравнение плоскости, проходящей через ось Оz и образующей с плоскостью 2x+y- z-7=0 угол 60о. Решение. Плоскость, проходящая через ось Oz, задается уравнением Ax+By=0, где А и В одновременно не обращаются в нуль. Пусть В не . Решая квадратное уравнение 3m2 + 8m - 3 = 0, находим его корни Пример 1.17. Составьте канонические уравнения прямой: Решение. Канонические уравнения прямой имеют вид:
где m, n, р - координаты направляющего вектора прямой, x1, y1, z1 - координаты какой-либо точки, принадлежащей прямой. Прямая задана как линия пересечения двух плоскостей. Чтобы найти точку, принадлежащую прямой, фиксируют одну из координат (проще всего положить, например, x=0) и полученную систему решают как систему линейных уравнений с двумя неизвестными. Итак, пусть x=0, тогда y + z = 0, 3y - 2z+ 5 = 0, откуда y=-1, z=1. Координаты точки М(x1, y1, z1), принадлежащей данной прямой, мы нашли: M (0,-1,1). Направляющий вектор прямой легко найти, зная нормальные векторы исходных плоскостей n 1(5,1,1) и n 2(2,3,-2). Тогда
Канонические уравнения прямой имеют вид: x/(-5) = (y + 1)/12 = Пример 1.18. В пучке, определяемом плоскостями 2х-у+5z-3=0 и х+у+2z+1=0, найти две перпендикулярные плоскости, одна из которых проходит через точку М(1,0,1). Решение. Уравнение пучка, определяемого данными плоскостями, имеет вид u(2х-у+5z-3) + v(х+у+2z+1)=0, где u и v не обращаются в нуль одновременно. Перепишем уравнение пучка следующим образом: (2u +v)x + (- u + v)y + (5u +2v)z - 3u + v = 0. Для того, чтобы из пучка выделить плоскость, проходящую через точку М, подставим координаты точки М в уравнение пучка. Получим: (2u+v)×1 + (-u + v)×0 + (5u + 2v)×1 -3u + v =0, или v = - u. Тогда уравнение плоскости, содержащей M, найдем, подставив v = - u в уравнение пучка: u(2x-y +5z - 3) - u (x + y +2z +1) = 0. Т.к. u¹0 (иначе v=0, а это противоречит определению пучка), то имеем уравнение плоскости x-2y+3z-4=0. Вторая плоскость, принадлежащая пучку, должна быть ей перпендикулярна. Запишем условие ортогональности плоскостей:
(2u+ v)×1 + (v - u)×(-2) + (5u +2v)×3 = 0, или v = - 19/5u. Значит, уравнение второй плоскости имеет вид: u(2x -y+5z - 3) - 19/5 u(x + y +2z +1) = 0 или 9x +24y + 13z + 34 = 0
|
|||||||||||||||||
Последнее изменение этой страницы: 2016-12-14; просмотров: 628; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.226.165.234 (0.012 с.) |