Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Дезаминирование аминокислот. Прямое окислительное дезаминирование аминокислот. Трансдезаминирование. Судьба безазотистого остатка аминокислот. Кетогенные и глюкогенные аминокислоты.Содержание книги
Поиск на нашем сайте
Дезаминирование аминокислот представляет собой процесс отщепления от аминокислот аминогруппы с образованием свободного аммиака. Дезаминирование в организме человека может протекать в двух вариантах: а)в виде прямого дезаминирования, в ходе которого аммиак образуется при непосредственном отщеплении аминогруппы от аминокислоты б)в виде непрямого дезаминирования, в ходе которого отщепляемая аминогруппа вначале переносится с аминокислоты на другое соединение, от которого в дальнейшем отщепляется аммиак Прямое дезаминирование, в свою очередь, на разных уровнях организации живых объектов встречается в 4 вариантах: окислительное дезаминирование, внутримолекулярное дезаминирование, гидролитическое дезаминирование, восстановительное дезаминирование. В клетках человеческого организма работают лишь два из перечисленных механизма: окислительное и внутримолекулярное дезаминирование. Прямое окислительное дезаминирование. При прямом окислительном дезаминировании аминокислот образуются альфа-кетокислоты и аммиак. Процесс идет в два этапа. На первом этапе при участии фермента оксидазы аминокислот от аминокислоты отщепляется 2 атома водорода и аминокислота превращается в иминокислоту. Атомы водорода переносятся на простетическую группы ферментов, причем это ФМН (флавинмононуклеотид) для оксидазы аминокислот L-ряда и ФАД(флавинадениндинуклеотид) для оксидазы аминокислот D-ряда. Эти же ферменты затем переносят атомы водорода со своих простетических групп на молекулярный кислород с образование перекиси водорода. На втором этапе образовавшаяся иминокислота без участия фермента взаимодействует с водой с образованием кетокислоты и аммиака: Выделенная из организма человека оксидаза L-аминокислот представляет собой малоактивный фермент, к тому же он способен дезаминировать лишь около 10 аминокислот. Поэтому принято считать, что прямое окислительное дезаминирование аминокислот L-ряда не вносит существенного вклада в метаболизм этих соединений у человека.В то же время в печени и особенно в почках человека присутствует высокоактивная оксидаза аминокислот D-ряда, способная дезаминировать самые различные D‑аминокислоты. Трансдезаминирование аминокислот. Процесс трансдезаминирования — процесс двухэтапный. На первом этапе различные L-аминокислоты вступают в реакцию трансаминирования с 2-оксоглутаратом с образование кетоаналога аминокислоты и глутаминовой кислоты, тогда как на втором этапе происходит прямое окислительное дезаминирование глутамата с образованием аммиака и регенерацией 2-оксоглутарата. В условиях организма и аминотрансферазы, и глутаматдегидрогеназа представляют собой высокоактивные ферменты, что обеспечивает высокую скорость процесса трансдезаминирования в целом. Кроме того, в ходе трансдезаминирования не образуется токсичного для клеток пероксида водорода, что наблюдается при действии оксидазы L-аминокислот, и образуется восстановленный НАДН+Н+, при окислении которого в цепи дыхательных ферментов клетка получает 3 АТФ. Глутаматдегидрогеназа является регуляторным ферментом. Ее активность угнетается по аллостерическому механизму высокими концентрациями АТФ и ГТФ в клетке и повышается при нарастании концентрации АДФ и ГДФ. За счет работы этого регуляторного механизма скорость процесса трансдезаминирования аминокислот контролируется энергетическим статусом клетки. Если энергии в клетке недостаточно, скорость процесса возрастает, в то время как при достаточно хорошем обеспечении клеток энергией расщепление аминокислот тормозится. Углеродные скелеты аминокислот, образующиеся при дезаминировании аминокислот используются в клетках по следующим направлениям:в качестве субстратов для глюконеогенеза;превращаются в ацетоновые тела; окисляются до СО2 и Н2О;для ресинтеза аминокислот;Углеродные остовы аминокислот: Серина, Глицина, Треонина, Цистеина и Аланина превращаются в пируват и далее могут карбоксилироваться с образованием оксалоацетата (щавелево-уксусной кислоты). Углеродные скелеты Аспарагиновой кислоты, Аспарагина, Пролина, Гистидина, Глутаминовой кислоты, Глутамина, Аргинина, Валина, Изолейцина и Метионина в ходе своего расщепления образуют промежуточные продукты цикла Кребса, которые по ходу цикла могут также превращаться в оксалоацетат. Оксалоацетат через фосфоэнолпируват идет на синтез глюкозы. При расщеплении углеродных скелетов Лейцина, Лизина, Тирозина и Фенилаланина в качестве промежуточного продукта образуется ацетоацетат — соединение из группы ацетоновых тел. Эти аминокислоты получили название кетопластических или кетогенных, хотя часть углеродных скелетов Тирозина и Фенилаланина также может быть использована в глюконеогенезе. Углеродные остовы как глюкопластических, так и кетопластических аминокислот могут окисляться до СО2 и Н2О в цикле Кребса. Оксалоацетат, при своем декарбоксилировании превращается в пируват, а пируват, в свою очередь декарбоксилируясь, превращается в ацетил-КоА.
|
||||
Последнее изменение этой страницы: 2016-12-28; просмотров: 694; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.138.174.45 (0.006 с.) |