Мы поможем в написании ваших работ!
ЗНАЕТЕ ЛИ ВЫ?
|
Биосинтез рнк в тканях. Представление о посттранскрипционном процессинге рнк. Биологическая роль транскрипции.
Содержание книги
- Хромопротеиды, их виды и химический состав. Гемоглобин, строение и биологическая роль. Гемоглобинопатии.
- Активация и ингибирование ферментов. Ингибирование конкурентного и неконкурентного типа. Использование ингибиторов в качестве лекарственных препаратов, в том числе стоматологии.
- Витамины А, Д, Е, К, их химическая природа и участие в метаболических процессах. Нарушения физиологических функций организма при недостатке этих витаминов, их причины.
- Питательные вещества как источники энергии и пластического материала для организма. Общая схема катаболизма питательных веществ. Общие и специфические пути катаболизма.
- Цикл трикарбоновых кислот кребса (цтк). Последовательность реакций, регуляция работы цикла и его биологическая роль. Анаболические функции цтк.
- Химическая природа дегидрогеназ. НАД- и флавин-зависимые дегидрогеназы, их важнейщие субстраты.
- Их химическое строение, свойства и значение для организма.
- Переваривание углеводов в ЖКТ. Всасывание моносахаридов слизистой кишечника и транспорт их кровью. Непереносимость лактозы. Усвоение лактозы и галактозы в печени. Галактоземия, фруктоземия.
- Этап. Расщепление глюкозы до пирувата.
- Окислительное декарбоксилирование пировиноградной кислоты. Состав пируватдегидрогеназного комплекса. Роль в этом процессе витаминов В1 и В3.
- Глицеринсодержащие липиды тканей организма. Их виды, химическая структура, значение для организма. Особенности метаболизма глицерофосфолипидов в тканях.
- Ресинтез триацилглицеринов в стенке кишечника
- Транспортные липопротеиды крови: особенности строения, состава, функций липопротеидов разных классов. Изменения соотношения липопротеидов при атеросклерозе.
- VI. Обмен простых белков и аминокислот
- Дезаминирование аминокислот. Прямое окислительное дезаминирование аминокислот. Трансдезаминирование. Судьба безазотистого остатка аминокислот. Кетогенные и глюкогенные аминокислоты.
- Токсичность аммиака. Пути обезвреживания аммиака в организме. Биосинтез мочевины: последовательность реакций, суммарное уравнение. Нарушение процессов обезвреживания. Гипераммониемии.
- Обмен нуклеотидов и нуклеиновых кислот. Матричные биосинтезы.
- Первичная, вторичная и третичная структура днк. Роль ядерных белков в компактизации днк. Биологическая роль днк.
- Репликация днк, биологическая роль процесса. Механизм репликации. Роль ферментов и белков, не обладающих каталитической активностью в механизме репликации.
- Рнк: строение, биологическая роль различных классов, локализация в клетке. Особенности строения ирнк и трнк.
- Биосинтез рнк в тканях. Представление о посттранскрипционном процессинге рнк. Биологическая роль транскрипции.
- Метаболизм как интегрированная система метаболических путей. Уровни взаимосвязи. Система центральных метаболических путей, ее биологическая роль.
- Гормоны щитовидной железы. Общие представления о химической структуре, биосинтезе, влиянии на обмен веществ. Гипо- и гипертиреозы. Причины их возникновения.
- Гормональная регуляция фосфорно-кальциевого обмена. Роль паратгормона, кальцитонина и кальцитриола.
- Гликозаминогликаны и гликозаминопротеогликаны соединительной ткани. Их структура и выполняемые функции, особенности метаболизма. Химическая структура и роль фибронектина.
- Органические и минеральные компоненты эмали зуба. Особенности обменных процессов органического и минерального компонентов эмали зуба.
- Физико-химические параметры слюны: плотность, вязкость, осмотическое давление, буферная емкость, рН, поверхностное натяжение, их функциональное значение.
- Влияние характера питания, особенностей химического состава слюны и твердых тканей зуба на состояние зубов и развитие кариеса. Биохимические аспекты профилактики кариеса.
- Патологические составные части мочи, их происхождение. Методы обнаружения в моче глюкозы, белка, ацетоновых тел, кровяных и желчных пигментов.
Синтез РНК или транскрипция представляет собой первый этап реализации генетической информации, в ходе которого эта информация переписывается на молекулы РНК и только в этом виде становится доступной для ее использования в клетке. В результате транскрипции образуются, во-первых, мРНК, несущие информацию о последовательностях аминокислот в полипептидных цепях белков, во-вторых, структурные РНК: рРНК, тРНК, мяРНК, непосредственно выполняющие те или иные функции в клетке.
Синтез функционально активных молекул РНК можно разделить на два этапа.
На первом этапе происходит сборка молекулы РНК на соответствующем структурном гене ДНК; собственно это и есть непосредственно процесс транскрипции. Однако в результате транскрипции получается не готовая молекула той или иной РНК, а ее функционально неактивный предшественник. Такую РНК обычно называют первичным транскриптом соответствующего гена.
На втором этапе первичный транскрипт подвергается процессингу -, в ходе которого из первичного транскрипта формируется функционально активная молекула того или иного класса РНК.
Синтез первичного транскрипта
Процесс синтеза РНК носит консервативный характер. Это означает, что после синтеза РНК структура участка ДНК, на котором шел этот синтез, полностью восстанавливается; с другой стороны, ни один из структурных элементов участка ДНК, на котором шла транскрипция, не попадает в состав структуры новообразованной РНК. Пластическим материалом для синтеза РНК служат только главные рибонуклеозидтрифосфаты: АТФ, ГТФ, УТФ и ЦТФ. Ферментом, катализирующим синтез РНК является ДНК‑зависимая РНК-полимераза. В клетках эукариот в процессах транскрипции участвует 3 РНК-полимеразы: РНК-полимераза I ответственна за синтез рРНК; РНК-полимераза II — за синтез мРНК;РНК-полимераза III — за синтез тРНК и одной из рРНК — 5S-РНК.
Процесс синтеза первичного транскрипта принято разделять на 3 этапа: инициацию, элонгацию и терминацию.
В ходе инициации специальные белки — факторы транскрипции, связавшись с нуклеотидными блоками промотора, обеспечивают связывание РНК-полимеразы и ее ориентацию на стартовую точку кодирующей области гена.
РНК-полимераза раскручивает двойную спираль ДНК на протяжении 17 пар нуклеотидов, причем по мере продвижения РНК-полимеразы по кодирующей области гена происходит и перемещение этого участка раскрученной ДНК.
Найдя стартовую точку и определив кодирующую цепь ДНК, РНК-полимераза отбирает из окружающей среды два рибонуклеозидтрифосфата, азотистые основания которых комплементарны азотистому основанию дезоксирибонуклеотидного остатка стартовой точки и азотистому основанию соседнего дезоксирибонуклеотидного остатка кодирующей цепи ДНК и соединяет их между собой за счет образования 3',5'-фосфодиэфирной связи.
Далее идет удлинение синтезируемой молекулы РНК или элонгация. Элонгация идет циклически: РНК-полимераза отбирает из окружающей среды очередной рибонуклеозидтрифосфат с комплементарным азотистым основанием дезоксирибонуклеотидному остатку матричной цепи ДНК, присоединяет его к синтезируемой цепи РНК и продвигается по ДНК на одну пару дезоксирибонуклеотидов. Затем цикл повторяется.
Спиральная структура матричной ДНК после прохождения РНК-полимеразы сразу же восстанавливается. Окончание процесса синтеза РНК, т.е. терминация, происходит за пределами кодирующей области гена, в районе спейсера.
Процессинг мРНК включает: кэпирование первичного транскрипта; сплайсинг - удаление интронов, сшивание экзонов; формирование 5'-конца молекулы, включающее в себя удаление лишней последовательности нуклеотидов и присоединение полиаденилатного блока; превращение части главных нуклеотидов в минорные.
Синтезированные молекулы мРНК перемещаются из ядра в цитозоль. К настоящему времени мало что известно о механизме этого процесса. Предполагают, что в ядерных порах имеются специальные белки-рецепторы, которые “узнают” зрелые мРНК и с помощью механизма активного транспорта переносят их через ядерную мембрану. Молекулы мРНК, не прошедшие полностью процессинг, не могут участвовать в этом переносе.
|