Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Построение эпюр изгибающих моментов иСодержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Перерезывающих сил
Для расчетов на прочность необходимо отыскать опасное сечение балки, в котором действуют наибольшие ВСФ. Для этого необходимо знать закон изменения ВСФ в поперечных сечениях балки по ее длине, возникающих от действия на балку нагрузок. Этот закон можно выразить в виде аналитических зависимостей и изобразить с помощью специальных графиков, называемых эпюрами, которые в масштабе изображают значения функций и на протяжении всей балки. Для определения этих эпюр определяют численные значения моментов и перерезывающих сил для ряда сечений и по ним строят соответствующие эпюры. На основании зависимостей, характеризуемых выражениями (5.2) и (5.3), легко определить значения и для любого сечения, а затем построить их эпюры. Условимся: на эпюрах и положительные ординаты откладывать вниз (т.е. вдоль оси у), а отрицательные – вверх от оси балки. Рассмотрим несколько примеров, из которых можно усвоить технику построения эпюр и . Пример 5.1.
произвольно вверх. Опора А – шарнирно-неподвижная, в ней могут быть две реакции: горизонтальная и – вертикальная, нарисуем их тоже произвольно. Для определения всех реакций составим три уравнения статики для всей балки: 1) Откуда 2) Для определения составим сумму моментов относительно оси х, проходящей через т. А, т.е. . Все внешние моменты, направленные против хода часовой стрелки, считаем положительными. Все погонные нагрузки постоянные, поэтому их равнодействующие действуют в середине участков. Откуда 1,75кН. Реакция получилась положительной, следовательно, направив ее вверх, мы угадали ее действительное направление. 3) Для определения составим : Откуда = 0,75кН. Обязательно надо сделать проверку реакций, составив еще одно уравнение статики, например, , т.е. суммировать все нагрузки и найденные реакции на ось у: . Получим 0 = 0. Итак: = 0,75кН; 1,75кН; . II. Построение эпюр внутренних силовых факторов. В соответствии с характером конструкции балки и нагрузки делим балку на три участка. Эпюры и будем строить по участкам, используя метод сечений и формулы (5.2) и (5.3): I участок длиной . Проведем сечение в пределах участка. Видно, что проще рассмотреть левую отсеченную часть. Тогда сечение определим расстоянием от т. D. (лев) – пределы изменения . , т.е. эпюра линейна, поэтому для ее построения достаточно двух точек. , т.е. эпюра меняется по закону квадратной параболы, поэтому необходимо не менее трех точек на ней. Посчитаем величины и при следующих значениях : . Строим эпюры и на этом участке, откладывая в масштабе отрицательные значения и вверх от оси бруса. II участок длиной . Рассмотрим тоже левую часть (лев): Считаем: Строим эпюры и на этом участке, учитывая, что для построения надо два значения (линейная зависимость), а для построения необходимо не менее трех значений в пределах участка (парабола). III участок. Проводим сечение, видно, что проще рассмотреть правую отсеченную часть. В этом случае расстояние до сечения будем отсчитывать от опоры А, (правая часть): а) ; б) . Считаем: . Эпюра линейна, строим ее по двум точкам. Видно, что при некотором значении эпюра меняет знак, т.е. = 0, а согласно зависимости (5.4) в этом сечении величина принимает экстремальное значение. Подставим в формулу а) = 0 при : , отсюда 0,75 м. Подставим = 0,75 м в формулу б) и найдем = 2,28 кНм. Это будет третьей точкой для построения эпюры . Экстремальные значения при построении эпюр вычислять обязательно. На эпюрах ставим знаки, размерность величин, штриховка перпендикулярна к оси бруса (вертикальная).
Проверка построенных эпюр Существует несколько способов проверки эпюр, в том числе с использованием зависимостей (5.4) и (5.5). Рассмотрим два самых простых способа: 1. Проверка эпюры : при движении по эпюре (ее обводке) справа – налево скачки на ней должны быть равны по величине и направлению локальным силам, приложенным к балке в этих сечениях. Проверим эпюру на рис. 5.5: в сечении А скачок вверх на 0,75кН, здесь действует 0,75кН вверх; сечение С, здесь скачок вниз от 0,75 до 2,75, т.е. на 2 кН, здесь действует 2кН вниз; в сечении В скачок от 0,75 до -1, т.е. на 1,75кН вверх, здесь действует = 1,75кН вверх; в сечении D нет скачка и нет силы. Итак, во всех сечениях правило выполняется. 2. Проверка эпюры : скачки на эпюре по модулю должны быть равны локальным моментам, действующим на балку в этих сечениях. Проверим эпюру на рис. 5.5: в сечении А скачок на 2кНм, здесь действует 2кНм; в сечении В скачок на 1кНм, здесь приложен 1кНм; больше скачков на эпюре нет и на балке нет локальных моментов. Итак, во всех сечениях правило выполняется. Наличие на эпюре скачка без приложенного момента на балке говорит об ошибочности эпюры . Пример 5.2. Криволинейный брус радиуса (арка) Дано: 2м, 2кН, 4кН, 2кНм (рис.5.6)
Рис.5.6 Опорные реакции в заделке можно определить из обычных трех уравнений статики. По виду конструкции арки и ее нагрузки имеем только один участок. В произвольном месте арки делаем разрез (сечение) в т. D. Очевидно, что проще рассмотреть ту часть арки , где приложены нагрузки, тогда не надо определять все реакции опор . Положение разреза т. D определим угловой координатой (т. D надо выбрать так на рис. 5.6, чтобы угол был острым). В сечении D вводим оси так, чтобы ось была направлена по касательной к арке в т. D,а ось по радиусу. Здесь , т.е. в пределах всей арки рассматривается левая часть арки от разреза. Силы и разложим на составляющие по осям и на рис. 5.6. При этом получим два прямоугольных треугольника, в которых необходимо найти по признакам равенства углов (два угла равны, если их стороны параллельны или взаимно перпендикулярны). Кроме и в поперечном сечении арки возникают – внутренние продольные силы, которые определяются по формулам, аналогичным (5.2) и (5.3), полученным в разделе 1. . (5.7) Учитывая, что мы рассматриваем левую отсеченную часть арки, по формулам (5.2), (5.3) и (5.7) получим: (5.8) Здесь и плечи у сил и определяются из рис. 5.6. Все эпюры криволинейны, поэтому определяем не менее трех точек на каждой эпюре по формулам (5.8): Выбираем масштабы для и откладываем полученные значения с учетом знаков: положительные – внутрь, т.е. вдоль оси , отрицательные – наружу, против оси . В каждом сечении величины откладываются по радиусам. На каждой эпюре полученные точки соединяем плавными кривыми. Далее, при необходимости, надо уточнить эпюры с учетом следующих правил: 1. Если на эпюре меняется знак, надо найти величину , где = 0. В этом сечении, при на эпюре будет экстремум. Для этого в формулу (5.8а) подставим = 0 при и найдем угол . Далее в (5.8в) подставим и найдем . На нашей эпюре этот случай присутствует. Вычислим: . Отсюда и угол = – 4,47кН. 2. Если на эпюре меняется знак (как у нас), надо найти , где = 0 по (5.8в). В этом сечении, т.е. при на эпюре и на эпюре будут экстремумы. Вычислим их: По (5.8в) , и угол . По (5.8а) и (5.8с) найдем при : = – 4,47кН; = – 14,94кНм. Найденные экстремальные значения откладываем на эпюрах, и с их учетом строим окончательные эпюры и , которые показаны на рис. 5.6. На эпюрах ставятся знаки, штриховка делается по радиусам.
|
||||||||
Последнее изменение этой страницы: 2016-12-13; просмотров: 455; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.135.241.191 (0.013 с.) |