Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Человеческий фактор в системе «человек— машина — производственнаяСодержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
СРЕДА» Обеспечение безопасности деятельности человека на производстве представляет собой разработку мер защиты от опасностей, формирующихся в системе «человек—машина— производственная среда». Каждая подсистема этой системы содержит свойственные ей опасности, которые в сумме формируют все опасности в этой системе. Подсистему «человек» целесообразно рассматривать как взаимосвязанные понятия организма и личности. Поэтому опасности этой подсистемы формируются физиологическими, психологическими возможностями человека, которые в основном определяются нервной системой — центром деятельности всего организма, а также антропометрическими показателями ФИЗИОЛОГИЧЕСКИЕ ХАРАКТЕРИСТИКИ ЧЕЛОВЕКА Нервная система и анализаторы человека. Защита человека от опасностей среды обитания заложена «природой» в его организме в форме безусловных и условных рефлексов. Рефлекс — основной акт нервной системы. Это активная реакция организма на раздражение рецепторов, вызываемая посредством нервной системы. Рефлексы, существующие уже при рождении человека, называют безусловными или инстинктами. Они передаются по наследству. Условные рефлексы преображаются в течение жизни путем обучения в определенных условиях. В отличие от безусловных рефлексов условные рефлексы могут быть вызваны любыми изменениями, происходящими вне и внутри организма. Они индивидуальны и определяются своим временным характером. Они сигнализируют нам об разнообразных изменениях в среде обитания, в том числе и опасных для здоровья человека. Рис. 2.1. Типы нейронов нервной системы человека И.П.Павлов предложил называть вид деятельности нервной системы, который обусловливает нормальные отношения организма с внешним миром или поведением, — высшей нервной деятельностью. Осуществление высшей нервной деятельности как основной деятельности нервной системы связано с низшей нервной деятельностью, которая объединяет и регулирует работу всех внутренних органов. Ясно, что без согласованной деятельности всех органов тела, соответствующей условиям жизни, немыслимо существование организма. Рис. 2.2. Функциональная схема анализатора Структурной единицей нервной системы является нервная клетка или нейрон. Различные типы нейронов представлены на рис.2.1. Нейрон отличается от других клеток организма рядом особенностей. Прежде всего их популяция численностью от 10 до 30 млрд. клеток почти полностью «укомплектована» уже к моменту рождения, и ни один из нейтронов, если он отомрет, не заменяется новым. Считается, что когда человек минует период зрелости, у него ежедневно отмирает около 10 тысяч нейронов, а после 40 лет этот суточный показатель удваивается. Другая важная особенность нейронов состоит в том, что они в отличие от других клеток организма имеют единственную функцию, заключающуюся в проведении нервной информации. Нервная система определяет деятельность организма человека. При этом нервная система выполняет две важнейшие функции. Первая — коммуникационная, вторая —обобщение и переработка получаемой информации и программирование соответствующей реакции организма. Коммуникационную функцию нервной системы выполняют анализаторы человека. Анализатор состоит из рецепторов — специализированных клеток, воспринимающих и передающих действия раздражителей внешнего мира и внутренней среды организма, и нервных связей (рис. 2.2.). Воздействие раздражителя на рецептор приводит к возникновению нервного импульса, который по чувственному (афферентному) нерву передается в определенные участки коры больших полушарий головного мозга. Ответная реакция передается по двигательному (эфферентному) нерву от нервных центров к эффекторам (железам и мышцам), что дает возможность определенным и специфическим образом реагировать на те события во внешней среде, с которыми сталкивается организм. Преобразование энергии внешнего воздействия в нервный импульс, его проведение в мозге, формирование ощущения и ответного действия — все это развернуто во времени. Отрезок времени от начала раздражения до возникновения ответной реакции называется латентным (скрытым) периодом. Он неодинаков для различных анализаторов (табл.2.1.). В организме коммуникативную функцию обеспечивает периферическая нервная система, состоящая из соматической нервной системы, ответственной за взаимодействие организма с внешним миром, и вегетативной нервной системы, регулирующей деятельность внутренних органов сердца, легких, пищеварительного тракта, почек и др. Вторую функцию нервной системы выполняет центральная нервная система, что включает широкий диапазон процессов — от простейших рефлексов на уровне спинного мозга до самых сложных мысленных операций на уровне высших отделов головного мозга. Организация нервной системы человека представлена на рис. 2.3. Воздействие раздражителя на рецептор приводит к возникновению нервного импульса, который по чувственному нерву передается в определенные участки коры больших полушарий головного мозга. Ответная реакция передается по эффективному (двигательному) нерву. Преобразование энергии внешнего воздействия в нервный импульс, его проведение в мозге, формирование ощущения и ответного действия — все это развернуто во времени и называется латентным (скрытым) периодом. Он неодинаков для различных анализаторов. Общие характеристики анализаторов. Целесообразная и безопасная деятельность человека основывается на постоянном приеме и анализе информации о характеристиках внешней среды и внутренних системах организма. Этот процесс осуществляется с помощью анализаторов — подсистем центральной нервной системы (ЦНС), обеспечивающих прием и первичный анализ информационных сигналов. Информация, поступающая через анализаторы, называется сенсорной (от лат. зепзиз — чувство, ощущение), а процесс ее приема и первичной переработки — сенсорным восприятием. Центральной частью является некоторая зона в коре головного мозга. Периферическая часть — рецепторы—вынесена на поверхность тела для Рис. 2.3. Структура нервной системы человека приема внешней информации либо размещена во внутренних системах и органах для восприятия информации об их состоянии (внешние рецепторы в обычной речи называют органами чувств). Проводящие нервные пути соединяют рецепторы с соответствующими зонами мозга. В зависимости от специфики принимаемых сигналов различают следующие анализаторы. Внешние: зрительный (рецептор глаз); слуховой (рецептор ухо); тактильный, болевой, температурный (рецепторы кожи); обонятельный (рецептор в носовой полости); вкусовой (рецепторы на поверхности языка и нёба). Внутренние: анализатор давления; кинестетический (рецепторы в мышцах и сухожилиях); вестибулярный (рецептор в полости уха); специальные, расположенные во внутренних органах и полостях тела. Основные параметры анализаторов следующие. 1. Абсолютная чувствительность к интенсивности сигнала (абсолютный порог ощущения по интенсивности) характеризуется минимальным значением воздействующего раздражителя, при котором возникает ощущение. В зависимости от вида раздражителя абсолютный порог измеряется в единицах энергии, давления, температуры, количества или концентрации вещества и т. п. Минимально ощущаемую интенсивность сигнала принято называть нижним порогом чувствительности. Психофизическими опытами установлено, что величина ощущений изменяется медленнее, чем сила раздражителя. Интенсивность ощущений Е выражается логарифмической зависимостью (закон Вебера—Фех-нера) где J— интенсивность раздражителя; K и С — некоторые константы, определяемые данной сенсорной системой. 2. Предельно допустимая интенсивность сигнала (обычно близка к болевому порогу) измеряется в тех же единицах. Максимально ощущаемую величину сигнала принято называть верхним порогом чувствительности. 3. Дифференциальная (различительная) чувствительность к изменению интенсивности сигнала — это минимальное изменение интенсивности сигнала, ощущаемое человеком. Различают абсолютные дифференциальные пороги, характеризуемые значением ДУ, и относительные, выражаемые в процентах: ∆J/J- 100 %, где J— исходная интенсивность. 4. Дифференциальная (различительная) чувствительность к изменению частоты сигнала — это минимальное изменение частоты F сигнала, ощущаемое человеком. Измеряется аналогично дифференциальному порогу по интенсивности либо в абсолютных единицах АР, либо в относительных - ∆ F/F • 100%. 5. Границы (диапазон) спектральной чувствительности (абсолютные пороги ощущений по частоте, длине волны) определяются для анализаторов, чувствительных к изменению частотных характеристик сигнала (зрительного, слухового, вибрационного), отдельно нижний и верхний пороги. 6. Пространственные характеристики чувствительности специфичны для каждого анализатора. 7. Адаптация (привыкание) и сенсибилизация (повышение чувствительности) характеризуются временем и присущи каждому типу анализаторов. Функционирование разных анализаторов существенно изменяется под влиянием неблагоприятных для человека условий. Низкие и высокие температуры, вибрации, перегрузки, невесомость, слишком интенсивные потоки информации, ведущие к дефициту времени,и ее недостаток, утомление, вызванное длительной работой или неблагоприятными условиями, состояние стресса — все эти факторы вызывают различные изменения характеристик анализаторов.
Рис. 2.4. Зрительный анализатор: а — структура глаза; б — прохождение световых воли через сетчатку глаза Чтобы обеспечить достаточную надежность деятельности человека при приеме и анализе сигналов в любых условиях, для практических расчетов рекомендуется использовать не абсолютные и дифференциальные пороги чувствительности анализаторов к различным характеристикам сигналов, а оперативные пороги, характеризующие не минимальную, а некоторую оптимальную различимость сигналов. Обычно оперативный порог в 10—15 раз выше соответствующего абсолютного и дифференциального. Характеристика зрительного анализатора. В процессе деятельности человек до 90 % всей информации получает через зрительный анализатор. Свет—это лишь узкая полоса в спектре электромагнитных колебаний (380 — 760 нм), где энергия может восприниматься человеческим глазом. Световое раздражение тем интенсивнее (т. е. тем ярче), чем больше фотонов соответствует той или иной частоте. Глаз функционирует наподобие фотоаппарата. Как и фотоаппарат, он способен изменять диаметр отверстия для прохождения света и наводить на фокус линзу для получения четкого изображения. Снабжен он и чувствительной поверхностью, где химическая структура пигментов, так же, как и химическая структура фотопленки, способна изменяться под действием фотонов (рис.2.4.). Световые лучи проникают в глаз через роговицу, которая концентрирует их перед проникновением в водянистую влагу — прозрачную жидкость, питающую роговицу и поддерживающую определенную форму глаза. Затем лучи проходят через отверстие зрачка, размер которого регулируется радужной оболочкой — при ярком свете он уменьшается, а в темноте увеличивается. После этого лучи фокусируются чечевицеобраз-ным хрусталиком, который становится более плоским или более выпуклым в зависимости от того, удаляется ли фокусируемый предмет от глаза или приближается к нему; благодаря этому процессу аккомодации световые лучи, прошедшие через стекловидное тело (студенистое вещество, выполняющее примерно те же функции, что и водянистая влага), формируют на сетчатке глаза четкое изображение. Рецепторами в сетчатке служат клетки, содержащие чувствительные к свету вещества — фотопигменты, разлагающиеся под действием фотонов и запускающие тем самым электрическую реакцию рецепторов. По периферии сетчатки распределены 120 млн. палочек, не способных различать цвета. Зрение в черных, серых и белых тонах не требует много света—палочки весьма эффективно функционируют и при слабом освещении. Цветовое зрение обеспечивают 6—7 млн. колбочек, сосредоточенных в центральной области сетчатки, особенно в небольшой, с булавочную головку зоне, где около 50 тысяч колбочек образуют так называемую центральную ямку. Каждая колбочка содержит фотопигмент одного из трех типов, чем и определяется ее чувствительность к световым волнам той или иной длины — к красному, зеленому или синему цвету; соответствующий дополнительный цвет подавляет реакцию колбочки. Колбочки и палочки образуют целую сеть связей с двумя другими слоями клеток, расположенными впереди слоя рецепторов, — сначала с биполярными клетками, а затем с ганглиозными клетками, которые посылают свои нервные волокна в составе зрительного нерва в головной мозг. Таким образом, световые волны, прежде чем воздействовать на фоторецепторы (колбочки или палочки) и породить нервные сигналы в биполярных и ганглиозных клетках, вначале должны пройти сквозь два слоя этих самых клеток (рис. 2.4.). Ганглиозных клеток насчитывается около миллиона, т.е. на 130 ре-цепторных клеток в среднем приходится одна ганглиозная клетка. Однако «концентрация» проводящих путей различна в зависимости от того, идет ли речь о палочках или о колбочках. Информация от палочек передается по «общим» нервным путям, где одна ганглиозная клетка приходится на многие десятки палочек; что касается колбочек, то многие из них располагают «собственным», индивидуальным выходом в зрительный нерв и головной мозг. Такой характер передачи информации, наряду с тем фактом, что колбочки более плотно сконцентрированы в центральной ямке, позволяет понять, почему острота зрения максимальна именно в этой области сетчатки и почему предмет, изображение которого проецируется в центр сетчатки, всегда воспринимается отчетливее, чем предмет, расположенный ближе к периферии поля зрения. Существует множество аномалий зрения. Есть среди них и такие, которые связаны с дефектами фоторецепторов и обусловливают цветовую и ночную («куриную») слепоту. Цветовая слепота, называемая также дальтонизмом, — аномалия, которой страдают 5% всех людей, главным образом мужчины. Дальтонизм обусловлен выпадением функций колбочек одного из трех типов — чаще всего тех, которые чувствительны к световым волнам, соответствующим красному или зеленому цвету. Больной не способен различать цвета, воспринимаемые здоровым человеком как «красный» и «зеленый». При этом его цветовое зрение ограничивается более или менее темными оттенками желтого, синего и серого цветов. На 1 млн. людей приходится 25 человек, вообще не различающих цвета. Возможно, что это нарушение возникает в самом раннем детстве вследствие заболевания или же развивается в результате отравления загрязняющими веществами, а также может быть обусловлено наследственным дефектом. Ночная слепота обусловлена нарушением функции палочек, которые, как уже отмечалось, являются единственными фоточувствительными элементами сетчатки, способными функционировать при слабом освещении. Это нарушение может возникнуть по многим причинам, самая обычная из которых—недостаток витамина А, необходимого для восстановления зрительного пигмента палочек. При оценке восприятия пространственных характеристик основным понятием является острота зрения, которая характеризуется минимальным углом, под которым две точки видны как раздельные. Острота зрения зависит от освещенности, контрастности, формы объекта и других факторов. При оптимальной освещенности (100—700 лк) порог разрешения составляет от 1 град до 5 мин. При уменьшении контрастности острота зрения снижается. Точное восприятие зрительных сигналов и четкое различение деталей возможно только в центральной части поля зрения размером 3 град от оси во все стороны. Глубинное зрение связано с восприятием пространства. Ошибка восприятия абсолютной удаленности составляет 12% при дистанции 30 м. Восприятие пространства-формы, объема, величины и взаимного расположения объектов, их рельефа, удаленности и направления, в котором они находятся, достигается за счет бинокулярного зрения двумя глазами. Рис. 2.5. Поперечный разрез уха Характеристика слухового анализатора. С помощью звуковых сигналов человек получает до 10% информации. Раздражители, вызывающие слуховые ощущения, представляют собой волны, которые образуются в результате колебаний частиц воздуха. Вибрации какого-либо предмета вызывают поочередное образование уплотненных и разреженных зон воздуха, которые затем в виде последовательных механических волн распространяются в пространстве. Функция уха заключается в преобразовании этих колебаний в нервные импульсы. Слуховое ощущение зависит главным образом от характеристик звуковой волны. Так, громкость звука определяется амплитудой волны, а его высота — частотой колебаний. Известно, что человеческое ухо может безболезненно воспринимать звук, интенсивность которого в тысячу миллиардов (1012) раз выше интенсивности едва слышимого звука. Частоты звуковых колебаний, воспринимаемые человеческим ухом, имеют диапазон от 20 колебаний в секунду (20 Гц) до 20 тысяч колебаний в секунду (20 000 Гц). Ухо состоит из трех отделов (рис. 2.5). Наружное ухо состоит из ушной раковины и слухового прохода длиной 25 мм, упирающегося в барабанную перепонку-мембрану, вибрирующую под воздействием звуковых волн. В среднем ухе имеются три слуховые косточки: молоточек; наковальня и стремя, обеспечивающие передачу вибраций овальному окну на границе внутреннего уха. Во внутреннем ухе находится лабиринт, в состав которого входит улитка — трубка длиною 34 мм, спирально свернутая в 2,5 оборота наподобие раковины виноградной улитки. Улитка внутреннего уха заполнена жидкостью, которая приходит в движение под влиянием звуковых волн, передаваемых косточками среднего уха. Движение жидкости вызывает прогибание и смещение базилярной мембраны, проходящей вдоль всей улитки. Эта деформация базилярной мембраны сильнее всего выражена у основания улитки при воздействии высоких звуков, а у вершины — при воздействии низких. В месте максимальной деформации базилярной мембраны в результате возбуждения ее чувствительных клеток, волоски которых соприкасаются с нависающей над ними текториальной мембраной, происходит преобразование вибраций в нервные импульсы. Таким образом, частота звука различается в соответствии с тем участком базилярной мембраны, где происходит ее деформация, а его громкость —в зависимости от числа клеток, вовлеченных в деформацию. Затем информация передается в головной мозг по слуховому нерву, образованному отростками чувствительных волосковых клеток. Между тем моментом, когда барабанная перепонка начинает колебаться под действием звуковых волн и началом передачи нервных сигналов в мозг, могут возникать различные нарушения, обусловленные поражением того или иного отдела уха. Здесь следует различать так называемую проводниковую и сенсорную глухоту. Проводниковая (кондуктивная) глухота развивается в результате старения организма или вследствие инфекции среднего уха, вызывающей потерю подвижности сочленений слуховых косточек. Возникающее в результате ослабление слуха можно тем не менее компенсировать слуховым аппаратом, который усиливает звуковые сигналы перед их прохождением по костям черепной коробки. Сенсорная глухота возникает в результате деградации или разрушения волосковых клеток внутреннего уха, ответственных за преобразование колебаний базилярной мембраны в нервные импульсы. Иногда разрушению подвергается лишь какая-то определенная группа клеток. Это может случиться у рабочего, вынужденного с утра до вечера ковать металлические изделия: глухота в этом случае развивается в отношении только тех звуковых частот, которые вызывали постоянное возбуждение воло-сковых клеток. Подобная деградация нервных структур уха приводит к необратимой сенсорной глухоте, не поддающейся восстановлению каким-либо хирургическим вмешательством. Технический прогресс, однако, позволил недавно сконструировать протез, с помощью которого часть неработающих сенсорных клеток можно присоединить к микрокомпьютеру, способному обеспечить различение звуковых волн (пока довольно грубое) и передачу соответствующей информации по слуховому нерву в головной мозг. Характерными особенностями слухового анализатора являются: • способность быть готовым к приему информации в любой момент времени; • способность воспринимать звуки в широком диапазоне частот и выделять необходимые; • способность устанавливать со значительной точностью месторасположение источника звука. В связи с этим слуховое представление информации осуществляется в тех случаях, когда оказывается возможным использовать указанные свойства слухового анализатора. Наиболее часто слуховые сигналы применяются для сосредоточенного внимания человека-оператора (предупредительные сигналы и сигналы опасности), для передачи информации человеку-оператору, находящемуся в положении, не обеспечивающем ему достаточной для работы видимости объекта управления, приборной панели и т. п., а также для разгрузки зрительной системы. Для эффективного использования слуховой формы представления информации необходимо знание характеристик слухового анализатора. Свойства слухового -анализатора оператора проявляются в восприятии звуковых сигналов. С физической точки зрения звуки представляют собой распространяющиеся механические колебательные движения в слышимом диапазоне частот. Механические колебания характеризуются амплитудой и частотой. Амплитуда — наибольшая величина измерения давления при сгущениях и разрежениях. Частота — число полных колебаний в одну секунду. Единицей ее измерения является герц (Гц) — одно колебание в секунду, Амплитуда колебаний определяет величину звукового давления и интенсивность звука (или силу звучания). Звуковое давление принято измерять в паскалях (Па). Основными параметрами (характеристиками) звуковых сигналов (колебаний) являются: интенсивность (амплитуда), частота и форма, которые отражаются в таких звуковых ощущениях, как громкость, высота и тембр. Воздействие звуковых сигналов на слуховой анализатор определяется уровнем звукового давления (Па). Интенсивность (сила) звука (Вт/м2) определяется плотностью потока звуковой энергии (плотностью мощности). Для характеристики величин, определяющих восприятие звука, существенными являются не только абсолютные значения интенсивности звука и звукового давления, сколько их отношение к пороговым значениям (Jо = Ю-12 Вт/м2 или P0 = 2 • 10-5Па). В качестве таких относительных единиц измерения используют децибеллы (дБ): где J и Р —соответственно интенсивность и уровень звукового давления,.Jо и P0 — их пороговые значения. Интенсивность звука уменьшается обратно пропорционально квадрату расстояния; при удвоении расстояния снижается на 6 дБ. Абсолютный порог слышимости звука составляет (принят) 2 • 10-5 Па (Ю-12 Вт/м2) и соответствует уровню 0 дБ. Пользование шкалой децибелл весьма удобно, так как почти весь диапазон слышимых звуков укладывается менее чем в 140 дБ (рис. 2.6.). Громкость — характеристика слухового ощущения, наиболее тесно связанная с интенсивностью звука. Уровень громкости выражается в фонах; фон численно равен уровню звукового давления в дБ для чистого тона частотой 1000 Гц. Дифференциальная чувствительность к изменению громкости — K = (∆J/J), наблюдается в диапазоне частот 500—1000 Гц. Чувство равновесия и положения головы. Тело сохраняет равновесие благодаря тому, что мозг получает информацию о положении головы в пространстве. Эту информацию обеспечивает лабиринт — небольшой орган, расположенный во внутреннем ухе. Лабиринт состоит из трех отделов: улитки, речь о которой пойдет позже, полукружных каналов, чувствительных к вращению головы, и двух полостей — круглого и овального мешочков, ответственных за восприятие прямолинейного движения. Рис. 2.7. Рецепторы кожного анализатора Три полукружных канала лежат в трех взаимно перпендикулярных плоскостях и содержат студенистое вещество, в которое погружены чувствительные волоски (рис.2.5). Такого же рода волоски имеются в мешочках. При вращении или прямолинейном смещении головы движение передается студенистому веществу, а вместе с ним и чувствительным волоскам. Эта информация воспринимается нервными клетками, от которых отходят волоски, а затем поступает в головной мозг. Характеристика кожного анализатора. Всякий контакт с внешним предметом может вызывать ощущения четырех типов, способные объединяться в комплексные восприятия. Это ощущение давления, тепла, холода и боли. Рецепторы, образованные нервными окончаниями, разбросаны по всей поверхности тела, но расположены более плотно на ладонях, на коже живота и спины. Существует несколько типов кожных рецепторов. Свободные нервные окончания разбросаны по всей поверхности кожи и реагируют на температуру и давление либо сразу на оба этих воздействия. Рецепторы, расположенные в более глубоких слоях кожи (инкапсулированные нервные окончания и окончания, оплетающие основания волосяных фолликулов), воспринимают главным образом давление (рис.2.7). Говоря о температурных рецепторах, следует отметить, что на теле имеются точки, чувствительные только к теплу или только к холоду. Они активируются в зависимости от температуры кожи: если кожа разгорячена, всякий более холодный предмет будет казаться холодным, пусть даже его температура сравнительно высока; и наоборот, предмет, температура которого выше температуры кожи, будет казаться теплым. Таким образом, тепло и холод — понятия весьма относительные. Тактильные ощущения возникают в результате передачи информации различными кожными рецепторами при их контакте с предметом. Например, когда рука скользит по предмету с гладкой поверхностью, возбуждаются все рецепторы и все они одинаковым образом сообщают головному мозгу о своем возбуждении. Напротив, скольжение руки по шероховатой поверхности в каждый данный момент ведет к возбуждению лишь определенной группы рецепторов, которые, по мере того как рука продвигается Но неровностям, сменяются другими, в результате чего мозг получает информацию о характерных особенностях поверхности предмета. Болевые ощущения, по-видимому, возникают при слишком сильном возбуждении свободных нервных окончаний в результате повреждения тканей. Каждый микроучасток кожи обладает наибольшей чувствительностью к тем раздражителям (сигналам), для которых на этом участке имеется наибольшая концентрация соответствующих рецепторов — болевых, температурных и тактильных. Так, плотность размещения составляет на тыльной части кисти — 188 болевых, 14 осязательных, 7 Холодовых и 0,5 тепловых на квадратный сантиметр поверхности; на грудной клетке — соответственно 196, 29, 9 и 0.3. Воздействие в этих точках даже не специфическим, но достаточно сильным раздражителем независимо от его характера вызывает специфическое ощущение, обусловленное типом рецептора. Например, интенсивный тепловой луч, попадая в точку боли, вызывает ощущение боли. Чувствительность к прикосновению. Ощущение, возникающее при действии на кожную поверхность различных механических стимулов (прикосновение, давление), вызывающих деформацию кожи. Ощущение возникает только в момент деформации. Абсолютный порог тактильной чувствительности определяется по тому минимальному давлению предмета на кожную поверхность, которое производит едва заметное ощущение прикосновения. Наиболее высоко развита чувствительность на дистальных частях тела. Примерные пороги ощущений: для кончиков пальцев руки — 3 г/мм2; на тыльной стороне пальца — 5 г/мм; на тыльной стороне кисти — 12 г/мм; на животе — 26 г/мм; на пятке — 250 г/мм2. Порог различения в среднем равен примерно 0,07 исходной величины давления. Тактильный анализатор обладает высокой способностью к пространственной локализации. При последовательном воздействии одиночных раздражителей ошибка в локализации колеблется в пределах 2—8 мм. Характерной особенностью тактильного анализатора является быстрое развитие адаптации, т.е. исчезновение чувства прикосновения или давления. Время адаптации зависит от силы раздражителя и для различных участков тела может изменяться в пределах от 2 до 20 с. Вибрационная чувствительность. Она обусловлена теми же рецепторами, что и тактильная, поэтому топография распределения вибрационной чувствительности по поверхности тела аналогична тактильной. Диапазон ощущения вибрации высок: от 5 до 12 000 Гц. Наиболее высока чувствительность к частотам 200—250 Гц. При их увеличении и уменьшении вибрационная чувствительность снижается. В этом случае пороговая амплитуда вибрации минимальна и равна 1 мкм. Пороги вибрационной чувствительности различны для различных участков тела. Наибольшей чувствительностью обладают дистальные участки тела человека, т. е. которые наиболее удалены от его медиальной плоскости (например, кисти рук). Кожная чувствительность к боли. Этот вид чувствительности обусловлен воздействием на поверхность кожи механических, тепловых, химических, электрических и других раздражителей. В эпителиальном слое кожи имеются свободные нервные окончания, которые являются специализированными нервными рецепторами. Между тактильными и болевыми рецепторами существуют противоречивые отношения. Проявляются они в том, что наименьшая плотность болевых рецепторов приходится на те участки кожи, которые наиболее богаты тактильными рецепторами, и наоборот. Противоречие обусловлено различием функций рецепторов в жизни организма. Болевые ощущения вызывают оборонительные рефлексы, в частности рефлекс удаления от раздражителя. Тактильная чувствительность связана с ориентировочными рефлексами, в частности это вызывает рефлекс сближения с раздражителем. Биологический смысл боли состоит в том, что она, являясь сигналом опасности, мобилизует организм на борьбу за самосохранение. Под влиянием болевого сигнала перестраивается работа всех систем организма и повышается его реактивность. Болевой порог при механическом давлении на кожу измеряется в единицах давления и зависит от места измерений. Например, порог болевой чувствительности кожи живота составляет 15—20 г/мм2; кончиков пальцев — 300 г/мм2. Латентный период — около 370 мс. Критическая частота слияния дискретных болевых раздражителей — 3 Гц. Пороговая плотность потока тепла, вызывающего болевое ощущение, составляет 88 Дж/(м-с). Температурная чувствительность свойственна организмам, обладающим постоянной температурой тела, обеспечиваемой терморегуляцией. Температура кожи несколько ниже температуры тела и различна для отдельных участков: на лбу — 34 — 35°С, на лице — 20 — 25°С, на животе — 34°С, стопах ног — 25—27°С. Средняя температура свободных от одежды участков кожи равна 30—32°С. Коже присущи два вида рецепторов. Одни реагируют только на холод, другие — только на тепло. Пространственные пороги зависят от стимулирующих факторов: при контактном воздействии, например, ощущение возникает уже на площади в 1 мм2, при лучевом — начиная с 700 мм2. Латентный период температурного ощущения равен примерно 0,20 с. Абсолютный порог температурной чувствительности определяется по минимальному ощущаемому изменению температуры участков кожи относительно физиологического нуля, т. е. собственной температуры данной области кожи, адаптировавшейся к внешней температуре. Физиологический нуль для различных областей кожи может быть достигнут при температурах среды между 12—18°С и 41—42°С.Для тепловых рецепторов абсолютный порог составляет примерно 0,2°С, для холодных — 0,4°С. Порог различительной чувствительности составляет примерно 1°С. Кинестетический анализатор. Чувство положения тела и движения конечностей в пространстве обеспечивают сигналы, приходящие в мозг от рецепторов двух типов. Рецепторы первого типа представлены мышечными веретенами, находящимися внутри мышц, и рецепторами Голъжи, расположенными в сухожилиях; они посылают в нервные центры сигналы о степени растяжения или сокращения мышцы (рис.2.8). Рецепторы второго типа находятся в суставах и посылают в мозг непрерывные сигналы о взаимном расположении различных частей тела. Возможности двигательного аппарата представляют определенную значимость при конструировании защитных устройств, органов управления. Сила сокращения мышц человека колеблется в широких пределах. Например, номинальная сила кисти в 450—650 Н при соответствующей тренировке может быть доведена до 900 Н. Сила сжатия, в среднем равная 500 Н для правой и 450 Н для левой руки, может увеличиваться в два раза и более. Оптимальные усилия на органы управления: • для рукояток 20—40 Н (100 Н — максимальное); • для кнопок, тумблеров, переключателей легкого типа 1400—1600 Н, тяжелого —6000—12000; • для ножных педалей управления от 20—50 (используемых часто) до 300 Н (используемых редко); • для рычажного управления от 20—40 (используемых часто) до 120—160 Н (используемых редко). Диапазон скоростей, развиваемых движущимися руками человека, находится в пределах 0,01—8000 см/с. Наиболее часто используютсяхско-рости порядка 5—800 см/с. Скорость движения больше в направлении к себе, чем от себя, в вертикальной плоскости, чем в горизонтальной, сверху вниз, чем снизу вверх, вперед—назад, чем вправо—влево, слева направо для правой руки и справа налево для левой, чем наоборот. Вращательные движения в 1,5 раза быстрее поступательных. Обонятельный анализатор. Обоняние — это единственный вид ощущении, обусловленный прямой передачей информации в кору, минуя промежуточные низшие центры головного мозга. В каждой половине носовой полости, в ее верхней части, насчитывается около 30 млн. рецеп-торных клеток, ответственных за распознавание присутствующих в воздухе пахучих веществ (рис.2.9). Между тем до сих пор мало что известно о том, как происходит такое распознавание. Теоретически различают семь основных групп запахов. Запах может быть эфирным (ацетон), камфорным (нафталин), мускусным (мускус), цветочным (запах розы), ментоловым (мята), острым (уксус) или гнилостным (запах тухлого яйца). Чтобы объяснить, каким образом мозг распознает запахи, было выдвинуто предположение, что каждая клетка функционирует как замок, к которому подходит только один ключ, соответствующий специфическому типу молекул определенной формы и величины. Было показано, что иногда молекулы со сходной структурой вызывают разные обонятельные ощущения.
Рис. 2.9. Обонятельная система человека Абсолютный порог обоняния измеряется
|
||||
Последнее изменение этой страницы: 2016-12-13; просмотров: 440; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.191.178.145 (0.012 с.) |