Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Стационарные состояния, их временная зависимость. Уравнение Шредингера для стационарных состояний.↑ Стр 1 из 2Следующая ⇒ Содержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Стационарные состояния, их временная зависимость. Уравнение Шредингера для стационарных состояний. Стационарные состояния – это состояния с фиксированными значениями энергии. Это возможно, если силовое поле, в котором движется частица, стационарно, т.е. функция U=U(x,y,z) не зависит явно от времени и имеет смысл потенциальной энергии. Уравнение Шредингера может быть представлено в виде произведения двух функций, одна из которых есть функция только координат, другая - только времени, причем зависимость от времени выражается множителем e-iωt=e-i(E/ħ)t, так что Ψ(x,y,z,t)=ψ(x,y,z)e-i(E/ħ)t, где Е- полная энергия частицы, постоянная в случае стационарного поля. Подставляя это выражение в уравнение Шредингера((–ħ2/2m)ΔΨ+U(x,y,z,t)Ψ=iħ(∂Ψ/∂t), где ħ=h/(2π), m –масса частицы, i-мнимая единица, U-потенциальная функция частицы в силовом поле, в котором она движется Δ-оператор Лапласа(ΔΨ=∂2Ψ/∂x2+∂2Ψ/∂y2+∂2Ψ/∂z2), Ψ(x,y,z,t)-искомая волновая функция частицы) получим: разделив на общий множитель e-i(E/ħ)t и преобразовав придем к уравнению, определяющему функцию ψ Δψ+(2m/ħ2)(E-U)ψ=0-уравнение Шредингера для стационарных состояний. Это уравнение имеет бесчисленное количество решений, из которых посредством наложения граничных условий отбираются решения, имеющие физич.смысл. Условия: волновые функции должны быть конечными, однозначными и непрерывными вместе со своими первыми производными. Т.о. реальный физич.смысл имеют только такие решения, которые выражаются регулярными функциями ψ. 2. максимальная кинетическая энергия электронов после вылета (если нет других потерь) равна: . Следовательно, . Это уравнение носит название уравнения Эйнштейна.
Условия возможности одновременного измерения разных величин. Соотношение неопределенностей Гейзенберга. Гейзенберг предположил, что невозможно определить точно положение и импульс. Неопределенность положения х и рх удовлетворяют соотношению ìΔx·px≥ħ/2 íΔy·py≥ħ/2 îΔz·pz≥ħ/2 Обозначив канонически сопряженные величины буквами А и В получим ΔА·ΔВ≥ħ/2. Производные неопределенностей значений двух сопряженных переменных не может быть по порядку величина меньше постоянной Планка ħ. Энергия и время тоже канонически сопряженные величины ΔЕ·Δt.≥ħ 2. Энергетическая светимость – величина равная отношению потока излучения Фе, испускаемого поверхностью, к площади сечения сквозь которое этот поток проходит. (Rе=Фе/S) Частица в одномерной потенциальной яме с бесконечно высокими стенками. Квантование энергии. Плотность вероятности для различных энергетических уровней. Проведем качественный анализ решений уравнений Шредингера применительно к частице в одномерной прямоугольной потенциальной с бесконечно высокими стенками. Такая яма описывается потенциальной энергией вида(частица движется вдоль оси х): ì∞,x<0 где l-ширина ямы, а энергия U(x)í0,0≤x≤l отсчитывается от ее дна î∞,x>1 Уравнение Шредингера для стационарных состояний запишется в виде: (∂2ψ/∂x2)+(2m/ħ2)(E-U)ψ=0. По условию задачи частица не проникает за пределы ямы, поэтому вероятность ее обнаружения за пределами равна 0. На границах ямы вероятность тоже обращается в 0. Следовательно, граничные условия имеют вид ψ(0)=ψ(l)=0. В пределах ямы(0≤х≤l) ур-ние Ш сведется к (∂2ψ/∂x2)+(2m/ħ2)Eψ=0 или (∂2ψ/∂x2)+k2ψ=0, где k2=2mE/ħ2. Общее решение диф.ур-ния ψ(x)=Asinkx+BcosKx. Т.к. ψ(0)=0, то В=0. Тогда ψ(x)=Asinkx. Условие ψ(l)=Asinkl=0 выполняется только при kl=nπ, где n –целые числа, т.е. необходимо чтобы k=nπ/l Из всего этого следует что En=(n2π2ħ2)/(2ml2) (n=1,2,3…) Т.е. стационарное уравнение Ш, описывающее движение частицы в потенциальной яме с бесконечно высокими стенками удовлетворяется только при собственных значениях En, зависящих от целого числа n. 2. «Красная» грани́ца фотоэффе́кта — минимальная частота или максимальная длина волны λ max света, при которой еще возможен внешний фотоэффект, то есть начальная кинетическая энергия фотоэлектронов больше нуля. Частота зависит только от работы выхода Aout электрона:
где Aout — работа выхода для конкретного фотокатода, h — постоянная Планка, а с - скорость света. Работа выхода Aout зависит от материала фотокатода и состояния его поверхности. Испускание фотоэлектронов начинается сразу же, как только на фотокатод падает свет с частотой или с длиной волны Стационарные состояния, их временная зависимость. Уравнение Шредингера для стационарных состояний. Стационарные состояния – это состояния с фиксированными значениями энергии. Это возможно, если силовое поле, в котором движется частица, стационарно, т.е. функция U=U(x,y,z) не зависит явно от времени и имеет смысл потенциальной энергии. Уравнение Шредингера может быть представлено в виде произведения двух функций, одна из которых есть функция только координат, другая - только времени, причем зависимость от времени выражается множителем e-iωt=e-i(E/ħ)t, так что Ψ(x,y,z,t)=ψ(x,y,z)e-i(E/ħ)t, где Е- полная энергия частицы, постоянная в случае стационарного поля. Подставляя это выражение в уравнение Шредингера((–ħ2/2m)ΔΨ+U(x,y,z,t)Ψ=iħ(∂Ψ/∂t), где ħ=h/(2π), m –масса частицы, i-мнимая единица, U-потенциальная функция частицы в силовом поле, в котором она движется Δ-оператор Лапласа(ΔΨ=∂2Ψ/∂x2+∂2Ψ/∂y2+∂2Ψ/∂z2), Ψ(x,y,z,t)-искомая волновая функция частицы) получим: разделив на общий множитель e-i(E/ħ)t и преобразовав придем к уравнению, определяющему функцию ψ Δψ+(2m/ħ2)(E-U)ψ=0-уравнение Шредингера для стационарных состояний. Это уравнение имеет бесчисленное количество решений, из которых посредством наложения граничных условий отбираются решения, имеющие физич.смысл. Условия: волновые функции должны быть конечными, однозначными и непрерывными вместе со своими первыми производными. Т.о. реальный физич.смысл имеют только такие решения, которые выражаются регулярными функциями ψ. 2. максимальная кинетическая энергия электронов после вылета (если нет других потерь) равна: . Следовательно, . Это уравнение носит название уравнения Эйнштейна.
|
||||
Последнее изменение этой страницы: 2016-09-20; просмотров: 482; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.188.233.69 (0.009 с.) |